--- license: apache-2.0 --- # MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs
📃 Paper |🤗 MedReason-8B | 📚 MedReason Data
## ⚡Introduction **MedReason** is a large-scale high-quality medical reasoning dataset designed to enable faithful and explainable medical problem-solving in large language models (LLMs). - We utilize a structured medical knowledge graph (KG) to convert clinical QA pairs into logical chains of reasoning, or “thinking paths”. - Our pipeline generates detailed reasoning for various medical questions from 7 medical datasets, resulting in a dataset of **32,682** question-answer pairs, each with detailed, step-by-step explanations. - By finetuning with proposed [MedReason dataset](https://huggingface.co/datasets/UCSC-VLAA/MedReason), our best model [MedReason-8B](https://huggingface.co/UCSC-VLAA/MedReason-8B), achieves *state-of-the-art* performance. We open-sourced our model here. ## 👨⚕️ Model - **Model Access** | Model | Base Model | Link | | ----------------- | ------------------------------------------------------------ | ---------------------------------------------------------- | | MedReason-8B | [HuatuoGPT-o1-8B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) | [Link](https://huggingface.co/UCSC-VLAA/MedReason-8B) | | MedReason-Llama | [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) | [Link](https://huggingface.co/UCSC-VLAA/MedReason-Llama) | | MedReason-Mistral | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | [Link](https://huggingface.co/UCSC-VLAA/MedReason-Mistral) | - **Deploy**: we provide a example code for direct inference with MedReason-8B. Also, MedReason-8B can be deployed with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), we provide code for model deployment using Sglang in `./src/evaluation/eval.py` ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('UCSC-VLAA/MedReason-8B',torch_dtype="auto",device_map="auto", use_safetensors= True) model.eval() tokenizer = AutoTokenizer.from_pretrained('UCSC-VLAA/MedReason-8B', trust_remote_code=True, padding_side='left') input_text = "How to stop a cough?" messages = [{"role": "user", "content": input_text}] inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True), return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=2048) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## 🙏🏼 Acknowledgement We gratefully acknowledge the inspiring work of [HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1), which laid important groundwork for this research. We also thank the developers of the excellent tools [curator](https://github.com/bespokelabsai/curator/), [trl](https://github.com/huggingface/trl), and [sglang](https://github.com/sgl-project/sglang) for making this work possible. ## 📖 Citation ``` @misc{wu2025medreasonelicitingfactualmedical, title={MedReason: Eliciting Factual Medical Reasoning Steps in LLMs via Knowledge Graphs}, author={Juncheng Wu and Wenlong Deng and Xingxuan Li and Sheng Liu and Taomian Mi and Yifan Peng and Ziyang Xu and Yi Liu and Hyunjin Cho and Chang-In Choi and Yihan Cao and Hui Ren and Xiang Li and Xiaoxiao Li and Yuyin Zhou}, year={2025}, eprint={2504.00993}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.00993}, } ```