File size: 17,610 Bytes
5f437b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
---
base_model: BAAI/bge-large-en-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4370
- loss:CosineSimilarityLoss
widget:
- source_sentence: '
Construct: Recognise a linear graph from its shape
Subject: Finding the Gradient and Intercept of a Line from the Equation
Question: Use a graphing program (e.g. Desmos) to plot the following pairs of
functions.
\[
y=3 \text { and } y=-2
\]
Tom says both functions are linear
Katie says both functions are vertical lines
Who is correct?
Incorrect Answer: Neither is correct
Correct Answer: Only
Tom
'
sentences:
- Believes the coefficent of x in an expanded quadratic comes from multiplying the
two numbers in the brackets
- Does not know the properties of a linear graph
- Misremembers the quadratic formula
- source_sentence: '
Construct: Multiply two decimals together with the same number of decimal places
Subject: Multiplying and Dividing with Decimals
Question: \( 0.6 \times 0.4= \)
Incorrect Answer: \( 2.4 \)
Correct Answer: \( 0.24 \)
'
sentences:
- When asked to solve simultaneous equations, believes they can just find values
that work in one equation
- Believes the solutions of a quadratic equation are the constants in the factorised
form
- When multiplying decimals, divides by the wrong power of 10 when reinserting the
decimal
- source_sentence: '
Construct: Estimate the volume or capacity of an object
Subject: Volume of Prisms
Question: Each of these measurements matches one of these objects. ![An image
of 4 objects and 4 measurements. The objects are an egg cup, a cereal box, a chest
of drawers and a piggy bank. And, the measurements are 87 cm^3, 1013 cm^3, 4172
cm^3 and 197,177 cm^3.]() Which measurement most likely matches the egg cup?
Incorrect Answer: \( 197177 \mathrm{~cm}^{3} \)
Correct Answer: \( 87 \mathrm{~cm}^{3} \)
'
sentences:
- Confuses quadratic and exponential graphs
- Cannot estimate the relative volume order, for different objects
- Does not know how many days are in a leap year
- source_sentence: '
Construct: Carry out division problems involving one negative integer
Subject: Multiplying and Dividing Negative Numbers
Question: \( 12 \div(-4)= \)
Incorrect Answer: \( 3 \)
Correct Answer: \( -3 \)
'
sentences:
- Believes dividing a positive by a negative gives a positive answer
- Believes -a is always smaller than a, ignoring the possibility that a is negative
- Subtracts instead of divides
- source_sentence: '
Construct: Construct frequency tables
Subject: Frequency tables
Question: Dave has recorded the number of pets his classmates have in the frequency
table on the right. \begin{tabular}{|c|c|}
\hline Number of pets & Frequency \\
\hline \( 0 \) & \( 4 \) \\
\hline \( 1 \) & \( 6 \) \\
\hline \( 2 \) & \( 3 \) \\
\hline \( 3 \) & \( 2 \) \\
\hline \( 4 \) & \( 5 \) \\
\hline
\end{tabular} If Dave wanted to work out the total number of pets own by his classmates,
what would be a useful column to include?
Incorrect Answer: Number of pets -
Frequency
Correct Answer: Number of pets \( x \) Frequency
'
sentences:
- Subtracts rather than multiplies when calculating total frequency
- Does not follow the arrows through a function machine, changes the order of the
operations asked.
- 'Believes the intersection in a prime factor venn diagram does not contribute
to the size of the number represented by a circle '
---
# SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("VaggP/bge-fine-tuned")
# Run inference
sentences = [
'\nConstruct: Construct frequency tables\nSubject: Frequency tables\nQuestion: Dave has recorded the number of pets his classmates have in the frequency table on the right. \\begin{tabular}{|c|c|}\n\\hline Number of pets & Frequency \\\\\n\\hline \\( 0 \\) & \\( 4 \\) \\\\\n\\hline \\( 1 \\) & \\( 6 \\) \\\\\n\\hline \\( 2 \\) & \\( 3 \\) \\\\\n\\hline \\( 3 \\) & \\( 2 \\) \\\\\n\\hline \\( 4 \\) & \\( 5 \\) \\\\\n\\hline\n\\end{tabular} If Dave wanted to work out the total number of pets own by his classmates, what would be a useful column to include?\nIncorrect Answer: Number of pets -\nFrequency\nCorrect Answer: Number of pets \\( x \\) Frequency\n',
'Subtracts rather than multiplies when calculating total frequency',
'Does not follow the arrows through a function machine, changes the order of the operations asked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,370 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 38 tokens</li><li>mean: 98.75 tokens</li><li>max: 414 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.91 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-----------------|
| <code><br>Construct: Construct a pictogram involving fractions of symbols<br>Subject: Pictogram<br>Question: This pictogram shows the different types of music Bob has in his music collection.<br>Bob has \( 2 \) rave CDs.<br><br>How would he display this on the pictogram? ![A pictogram showing the number of CDs Bob has in his musical collection. Pop has 3 and a half symbols, rock has 2 symbols, blues has 2 and a quarter symbols, jazz has 3 and a quarter symbols and classical has 1 and three-quarter symbols. Each symbol represents 4 CDs.]()<br>Incorrect Answer: ![\( 00 \)]()<br>Correct Answer: ![\( 0 \)]()<br></code> | <code>When interpreting a pictogram, thinks each symbol stands for 1</code> | <code>1.0</code> |
| <code><br>Construct: Use brackets to write function machines as calculations<br>Subject: Writing Expressions<br>Question: Tom and Katie are arguing about the result of this Function Machine:<br>Tom says the output is: \( 3 n-12 \)<br>Katie says the output is: \( 3(n-4) \)<br>Who is correct? ![A function machine with input n and operations subtract 4, multiply by 3]()<br>Incorrect Answer: Only Tom<br>Correct Answer: Both Tom and Katie<br></code> | <code>Does not think a factorised expression is equivalent to its multiplied out form</code> | <code>1.0</code> |
| <code><br>Construct: Interpret linear sections of real life graphs<br>Subject: Real Life Graphs<br>Question: The graph on the right shows the mass of sand in a bucket over time<br><br>What might the horizontal section represent? ![A graph with time (secs) on the horizontal axis and mass (g) on the vertical axis. The graph starts at the origin, travels in a straight line up and right, travels horizontally, then travels in a straight line down and right back to the x-axis, more steeply than the start. ]()<br>Incorrect Answer: Sand is being tipped out<br>Correct Answer: The bucket is full<br></code> | <code>Believes a horizontal line can show a constant rate of change</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.9141 | 500 | 0.0055 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |