File size: 117,702 Bytes
d838013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 |
{
"cells": [
{
"cell_type": "markdown",
"id": "43b502c1-9548-4580-84ad-1cbac158edb8",
"metadata": {
"id": "43b502c1-9548-4580-84ad-1cbac158edb8"
},
"source": [
"# Bonus Unit 1: Fine-Tuning a model for Function-Calling\n",
"\n",
"In this tutorial, **we're going to Fine-Tune an LLM for Function Calling.**\n",
"\n",
"This notebook is part of the <a href=\"https://www.hf.co/learn/agents-course/unit1/introduction\">Hugging Face Agents Course</a>, a free Course from beginner to expert, where you learn to build Agents.\n",
"\n",
"<img src=\"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png\" alt=\"Agent Course\"/>\n"
]
},
{
"cell_type": "markdown",
"source": [
"## Prerequisites 🏗️\n",
"\n",
"Before diving into the notebook, you need to:\n",
"\n",
"🔲 📚 **Study [What is Function-Calling](https://www.hf.co/learn/agents-course/bonus-unit1/what-is-function-calling) Section**\n",
"\n",
"🔲 📚 **Study [Fine-Tune your Model and what are LoRAs](https://www.hf.co/learn/agents-course/bonus-unit1/fine-tuning) Section**"
],
"metadata": {
"id": "gWR4Rvpmjq5T"
},
"id": "gWR4Rvpmjq5T"
},
{
"cell_type": "markdown",
"source": [
"# Step 0: Ask to Access Gemma on Hugging Face\n",
"\n",
"<img src=\"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/bonus-unit1/gemma.png\" alt=\"Gemma\"/>\n",
"\n",
"\n",
"To access Gemma on Hugging Face:\n",
"\n",
"1. **Make sure you're signed in** to your Hugging Face Account\n",
"\n",
"2. Go to https://huggingface.co/google/gemma-2-2b-it\n",
"\n",
"3. Click on **Acknowledge license** and fill the form.\n",
"\n",
"Alternatively you can use another model, and modify the code accordingly (it can be a good exercise for you to be sure you know how to fine-tune for Function-Calling).\n",
"\n",
"You can use for instance:\n",
"\n",
"- [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct)\n",
"\n",
"- [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)"
],
"metadata": {
"id": "1rZXU_1wkEPu"
},
"id": "1rZXU_1wkEPu"
},
{
"cell_type": "markdown",
"source": [
"## Step 1: Set the GPU 💪\n",
"\n",
"If you're on Colab:\n",
"\n",
"- To **accelerate the fine-tuning training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type`\n",
"\n",
"<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step1.jpg\" alt=\"GPU Step 1\"/>\n",
"\n",
"- `Hardware Accelerator > GPU`\n",
"\n",
"<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step2.jpg\" alt=\"GPU Step 2\"/>\n",
"\n",
"\n",
"### Important\n",
"\n",
"For this Unit, **with the free-tier of Colab** it will take around **6h to train**.\n",
"\n",
"You have three solutions if you want to make it faster:\n",
"\n",
"1. Train on your computer if you have GPUs. It might take time but you have less risks of timeout.\n",
"\n",
"2. Use a Google Colab Pro that allows you use to A100 GPU (15-20min training).\n",
"\n",
"3. Just follow the code to learn how to do it without training."
],
"metadata": {
"id": "5hjyx9nJlvKG"
},
"id": "5hjyx9nJlvKG"
},
{
"cell_type": "markdown",
"source": [
"## Step 2: Install dependencies 📚\n",
"\n",
"We need multiple librairies:\n",
"\n",
"- `bitsandbytes` for quantization\n",
"- `peft`for LoRA adapters\n",
"- `Transformers`for loading the model\n",
"- `datasets`for loading and using the fine-tuning dataset\n",
"- `trl`for the trainer class"
],
"metadata": {
"id": "5Thjsc9fj6Ej"
},
"id": "5Thjsc9fj6Ej"
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e63f4962-c644-491e-aa91-50e453e953a4",
"metadata": {
"tags": [],
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e63f4962-c644-491e-aa91-50e453e953a4",
"outputId": "3c1563d4-74fe-46f0-adcd-3e935261a89d"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.7/69.7 MB\u001b[0m \u001b[31m11.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m54.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m41.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m51.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.0/44.0 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m93.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m342.1/342.1 kB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m484.9/484.9 kB\u001b[0m \u001b[31m27.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.5/143.5 kB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.8/194.8 kB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.1/44.1 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m365.7/365.7 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.0/10.0 MB\u001b[0m \u001b[31m71.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.0/3.0 MB\u001b[0m \u001b[31m54.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m101.7/101.7 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
]
}
],
"source": [
"!pip install -q -U bitsandbytes\n",
"!pip install -q -U transformers\n",
"!pip install -q -U peft\n",
"!pip install -q -U accelerate\n",
"!pip install -q -U datasets\n",
"!pip install -q trl==0.12.2\n",
"!pip install -q -U tensorboardX\n",
"!pip install -q wandb"
]
},
{
"cell_type": "markdown",
"source": [
"## Step 3: Create your Hugging Face Token to push your model to the Hub\n",
"\n",
"To be able to share your model with the community there are some more steps to follow:\n",
"\n",
"1️⃣ (If it's not already done) create an account to HF ➡ https://huggingface.co/join\n",
"\n",
"2️⃣ Sign in and then, you need to store your authentication token from the Hugging Face website.\n",
"\n",
"- Create a new token (https://huggingface.co/settings/tokens) **with write role**\n",
"\n",
"<img src=\"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/bonus-unit1/create_write_token.png\" alt=\"Create HF Token\" width=\"50%\">\n",
"\n",
"3️⃣ Store your token as an environment variable under the name \"HF_TOKEN\"\n",
"- **Be very carefull not to share it with others** !"
],
"metadata": {
"id": "UWNoZzi1urSZ"
},
"id": "UWNoZzi1urSZ"
},
{
"cell_type": "markdown",
"source": [
"## Step 4: Import the librairies\n",
"\n",
"Don't forget to put your HF token."
],
"metadata": {
"id": "vBAkwg9zu6A1"
},
"id": "vBAkwg9zu6A1"
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7ad2e4c2-593e-463e-9692-8d674c541d76",
"metadata": {
"tags": [],
"colab": {
"base_uri": "https://localhost:8080/",
"height": 382
},
"id": "7ad2e4c2-593e-463e-9692-8d674c541d76",
"outputId": "5004413d-0202-4031-85e3-d1897fb8eba5"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Exception ignored in: <function _xla_gc_callback at 0x7eec9aaf6fc0>\n",
"Traceback (most recent call last):\n",
" File \"/usr/local/lib/python3.11/dist-packages/jax/_src/lib/__init__.py\", line 96, in _xla_gc_callback\n",
" def _xla_gc_callback(*args):\n",
" \n",
"KeyboardInterrupt: \n"
]
},
{
"output_type": "error",
"ename": "KeyboardInterrupt",
"evalue": "",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-2-8bc8cd036c8a>\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtransformers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAutoModelForCausalLM\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mAutoTokenizer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTrainingArguments\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBitsAndBytesConfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mset_seed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdatasets\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtrl\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mSFTTrainer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpeft\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_peft_model\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mLoraConfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTaskType\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/trl/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 91\u001b[0;31m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 92\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"module {self.__name__} has no attribute {name}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/trl/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/trl/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 100\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 101\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m raise RuntimeError(\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/trl/trainer/sft_trainer.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mdatasets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuilder\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDatasetGenerationError\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mhuggingface_hub\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_deprecation\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_deprecate_arguments\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m from transformers import (\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0mAutoModelForCausalLM\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0mAutoTokenizer\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPlaceholder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1765\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1766\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1767\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1768\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_modules\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m 1776\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1777\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1778\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1779\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1780\u001b[0m raise RuntimeError(\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/trainer.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;31m# Integrations must be imported before ML frameworks:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;31m# isort: off\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 42\u001b[0;31m from .integrations import (\n\u001b[0m\u001b[1;32m 43\u001b[0m \u001b[0mget_reporting_integration_callbacks\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mhp_params\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPlaceholder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1765\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1766\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1767\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1768\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_modules\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m 1776\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1777\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1778\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1779\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1780\u001b[0m raise RuntimeError(\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/integrations/integration_utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpackaging\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mversion\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPreTrainedModel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTFPreTrainedModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m__version__\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mversion\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m from ..utils import (\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_handle_fromlist\u001b[0;34m(module, fromlist, import_, recursive)\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1764\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPlaceholder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1765\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1766\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_class_to_module\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1767\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1768\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_modules\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py\u001b[0m in \u001b[0;36m_get_module\u001b[0;34m(self, module_name)\u001b[0m\n\u001b[1;32m 1776\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1777\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1778\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mmodule_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1779\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1780\u001b[0m raise RuntimeError(\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/__init__.py\u001b[0m in \u001b[0;36mimport_module\u001b[0;34m(name, package)\u001b[0m\n\u001b[1;32m 124\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0mlevel\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 126\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_bootstrap\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gcd_import\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpackage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 127\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/modeling_tf_utils.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDataCollatorWithPadding\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDefaultDataCollator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mactivations_tf\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_tf_activation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mconfiguration_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPretrainedConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mdynamic_module_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcustom_object_save\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/transformers/activations_tf.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mtf_keras\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mkeras\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mModuleNotFoundError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mkeras\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;34m\"\"\"AUTOGENERATED. DO NOT EDIT.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m__internal__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mactivations\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapplications\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/__internal__/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;34m\"\"\"AUTOGENERATED. DO NOT EDIT.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mbackend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mlayers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__internal__\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mlosses\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/__internal__/backend/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;34m\"\"\"AUTOGENERATED. DO NOT EDIT.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackend\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_initialize_variables\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0minitialize_variables\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackend\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtrack_variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 19\u001b[0m \"\"\"\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapplications\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdistribute\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mlayers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/applications/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapplications\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvnext\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mConvNeXtBase\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapplications\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvnext\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mConvNeXtLarge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapplications\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvnext\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mConvNeXtSmall\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/applications/convnext.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mbackend\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0minitializers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 30\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mlayers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 31\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapplications\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mimagenet_utils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/layers/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalization\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_normalization\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLayerNormalization\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalization\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munit_normalization\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mUnitNormalization\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 120\u001b[0;31m from tf_keras.src.layers.normalization.spectral_normalization import (\n\u001b[0m\u001b[1;32m 121\u001b[0m \u001b[0mSpectralNormalization\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 122\u001b[0m ) # noqa: E501\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/layers/normalization/spectral_normalization.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minitializers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTruncatedNormal\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mWrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# isort: off\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/layers/rnn/__init__.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtensorflow\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompat\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mv2\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabstract_rnn_cell\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAbstractRNNCell\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# Recurrent layers.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.11/dist-packages/tf_keras/src/layers/rnn/abstract_rnn_cell.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mbase_layer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtf_keras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrnn_utils\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# isort: off\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_find_and_load\u001b[0;34m(name, import_)\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_find_and_load_unlocked\u001b[0;34m(name, import_)\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap.py\u001b[0m in \u001b[0;36m_load_unlocked\u001b[0;34m(spec)\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap_external.py\u001b[0m in \u001b[0;36mexec_module\u001b[0;34m(self, module)\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap_external.py\u001b[0m in \u001b[0;36mget_code\u001b[0;34m(self, fullname)\u001b[0m\n",
"\u001b[0;32m/usr/lib/python3.11/importlib/_bootstrap_external.py\u001b[0m in \u001b[0;36m_code_to_timestamp_pyc\u001b[0;34m(code, mtime, source_size)\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"from enum import Enum\n",
"from functools import partial\n",
"import pandas as pd\n",
"import torch\n",
"import json\n",
"\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig, set_seed\n",
"from datasets import load_dataset\n",
"from trl import SFTTrainer\n",
"from peft import get_peft_model, LoraConfig, TaskType\n",
"\n",
"seed = 42\n",
"set_seed(seed)\n",
"\n",
"import os\n",
"\n",
"# Put your HF Token here\n",
"os.environ['HF_TOKEN']=\"hf_xxx\""
]
},
{
"cell_type": "markdown",
"id": "44f30b2c-2cc0-48e0-91ca-4633e6444105",
"metadata": {
"id": "44f30b2c-2cc0-48e0-91ca-4633e6444105"
},
"source": [
"## Step 5: Processing the dataset into inputs\n",
"\n",
"In order to train the model, we need to **format the inputs into what we want the model to learn**.\n",
"\n",
"For this tutorial, I enhanced a popular dataset for function calling \"NousResearch/hermes-function-calling-v1\" by adding some new **thinking** step computer from **deepseek-ai/DeepSeek-R1-Distill-Qwen-32B**.\n",
"\n",
"But in order for the model to learn, we need **to format the conversation correctly**. If you followed Unit 1, you know that going from a list of messages to a prompt is handled by the **chat_template**, or, the default chat_template of gemma-2-2B does not contain tool calls. So we will need to modify it !\n",
"\n",
"This is the role of our **preprocess** function. To go from a list of messages, to a prompt that the model can understand.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29da85c8-33bf-4864-aed7-733cbe703512",
"metadata": {
"tags": [],
"id": "29da85c8-33bf-4864-aed7-733cbe703512"
},
"outputs": [],
"source": [
"model_name = \"google/gemma-2-2b-it\"\n",
"dataset_name = \"Jofthomas/hermes-function-calling-thinking-V1\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"\n",
"tokenizer.chat_template = \"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{{ '<start_of_turn>' + message['role'] + '\\n' + message['content'] | trim + '<end_of_turn><eos>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}\"\n",
"\n",
"\n",
"def preprocess(samples):\n",
" batch = []\n",
" for conversations in zip(samples[\"conversations\"]):\n",
" conversation = conversations[0]\n",
"\n",
" # Instead of adding a system message, we merge the content into the first user message\n",
" if conversation[0][\"role\"] == \"system\":\n",
" system_message_content = conversation[0][\"content\"]\n",
" # Merge system content with the first user message\n",
" conversation[1][\"content\"] = system_message_content + \"Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\\n\\n\" + conversation[1][\"content\"]\n",
" # Remove the system message from the conversation\n",
" conversation.pop(0)\n",
"\n",
" batch.append(tokenizer.apply_chat_template(conversation, tokenize=False))\n",
"\n",
" return {\"content\": batch}\n",
"\n",
"dataset = load_dataset(dataset_name)\n"
]
},
{
"cell_type": "markdown",
"id": "dc8736d5-d64b-4c5c-9738-be08421d3f95",
"metadata": {
"id": "dc8736d5-d64b-4c5c-9738-be08421d3f95"
},
"source": [
"## Step 6: A Dedicated Dataset for This Unit\n",
"\n",
"For this Bonus Unit, we created a custom dataset based on [NousResearch/hermes-function-calling-v1](https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1), which is considered a **reference** when it comes to function-calling datasets.\n",
"\n",
"While the original dataset is excellent, it does **not** include a **“thinking”** step.\n",
"\n",
"In Function-Calling, such a step is optional, but recent work—like the **deepseek** model or the paper [\"Test-Time Compute\"](https://huggingface.co/papers/2408.03314)—suggests that giving an LLM time to “think” before it answers (or in this case, **before** taking an action) can **significantly improve** model performance.\n",
"\n",
"I, decided to then compute a subset of this dataset and to give it to [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) in order to compute some thinking tokens `<think>` before any function call. Which resulted in the following dataset :\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b63d4832-d92e-482d-9fe6-6e9dbfee377a",
"metadata": {
"tags": [],
"id": "b63d4832-d92e-482d-9fe6-6e9dbfee377a",
"outputId": "bda88f48-ca5d-4f47-b887-48d4ea5a53aa"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['content'],\n",
" num_rows: 3213\n",
" })\n",
" test: Dataset({\n",
" features: ['content'],\n",
" num_rows: 357\n",
" })\n",
"})\n"
]
}
],
"source": [
"dataset = dataset.map(\n",
" preprocess,\n",
" batched=True,\n",
" remove_columns=dataset[\"train\"].column_names\n",
")\n",
"dataset = dataset[\"train\"].train_test_split(0.1)\n",
"print(dataset)"
]
},
{
"cell_type": "markdown",
"id": "67724a23-f298-4247-b002-2cf370b03897",
"metadata": {
"id": "67724a23-f298-4247-b002-2cf370b03897"
},
"source": [
"## Step 7: Checking the inputs\n",
"\n",
"Let's manually look at what an input looks like !\n",
"\n",
"In this example we have :\n",
"\n",
"1. A *User message* containing the **necessary information with the list of available tools** inbetween `<tools></tools>` then the user query, here: `\"Can you get me the latest news headlines for the United States?\"`\n",
"\n",
"2. An *Assistant message* here called \"model\" to fit the criterias from gemma models containing two new phases, a **\"thinking\"** phase contained in `<think></think>` and an **\"Act\"** phase contained in `<tool_call></<tool_call>`.\n",
"\n",
"3. If the model contains a `<tools_call>`, we will append the result of this action in a new **\"Tool\"** message containing a `<tool_response></tool_response>` with the answer from the tool."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc60da04-9411-487a-b629-2c59024a20c0",
"metadata": {
"tags": [],
"id": "dc60da04-9411-487a-b629-2c59024a20c0",
"outputId": "6709e478-17b8-4769-865f-2cd025727ad4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<bos><start_of_turn>human\n",
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'get_news_headlines', 'description': 'Get the latest news headlines', 'parameters': {'type': 'object', 'properties': {'country': {'type': 'string', 'description': 'The country for which headlines are needed'}}, 'required': ['country']}}}, {'type': 'function', 'function': {'name': 'search_recipes', 'description': 'Search for recipes based on ingredients', 'parameters': {'type': 'object', 'properties': {'ingredients': {'type': 'array', 'items': {'type': 'string'}, 'description': 'The list of ingredients'}}, 'required': ['ingredients']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
"<tool_call>\n",
"{tool_call}\n",
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
"\n",
"Can you get me the latest news headlines for the United States?<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"<think>Okay, so the user asked for the latest news headlines in the United States. I need to figure out how to respond appropriately using the tools available.\n",
"\n",
"Looking at the tools provided, there's a function called get_news_headlines. That seems perfect for this situation. It requires a country code, which the user specified as the United States.\n",
"\n",
"Since the user is asking specifically about the US, I'll use the country parameter as 'United States' in the function call. This should fetch the relevant news for them.\n",
"\n",
"I should make sure to format the response correctly as a JSON object with the function name and arguments.\n",
"</think><tool_call>\n",
"{'name': 'get_news_headlines', 'arguments': {'country': 'United States'}}\n",
"</tool_call><end_of_turn><eos>\n",
"<start_of_turn>tool\n",
"<tool_response>\n",
"{'headlines': ['US President signs new bill into law', 'Major earthquake hits California', 'NASA announces new Mars mission', 'Tech giant releases new smartphone', 'US economy shows signs of recovery']}\n",
"</tool_response><end_of_turn><eos>\n",
"<start_of_turn>model\n",
"Here are the latest news headlines for the United States:\n",
"1. US President signs new bill into law\n",
"2. Major earthquake hits California\n",
"3. NASA announces new Mars mission\n",
"4. Tech giant releases new smartphone\n",
"5. US economy shows signs of recovery<end_of_turn><eos>\n",
"<start_of_turn>human\n",
"That's interesting. Can you get me the news for France now?<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"<think>Okay, the user initially asked for the latest US news, so I used get_news_headlines with 'United States'. Now the user is asking for France, so I'll call the same function with 'France' as the country. That makes sense because the function is designed for any country.\n",
"</think><tool_call>\n",
"{'name': 'get_news_headlines', 'arguments': {'country': 'France'}}\n",
"</tool_call><end_of_turn><eos>\n",
"<start_of_turn>tool\n",
"<tool_response>\n",
"{'headlines': ['French President announces new environmental policy', 'Paris Fashion Week highlights', 'France wins World Cup qualifier', 'New culinary trend sweeps across France', 'French tech startup raises millions in funding']}\n",
"</tool_response><end_of_turn><eos>\n",
"<start_of_turn>model\n",
"Here are the latest news headlines for France:\n",
"1. French President announces new environmental policy\n",
"2. Paris Fashion Week highlights\n",
"3. France wins World Cup qualifier\n",
"4. New culinary trend sweeps across France\n",
"5. French tech startup raises millions in funding<end_of_turn><eos>\n",
"\n"
]
}
],
"source": [
"# Let's look at how we formatted the dataset\n",
"print(dataset[\"train\"][8][\"content\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53a48281-2346-4dfb-ad60-cad85129ec9b",
"metadata": {
"tags": [],
"id": "53a48281-2346-4dfb-ad60-cad85129ec9b",
"outputId": "da4f7e33-227c-48bc-b3c3-24df31313a69"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<pad>\n",
"<eos>\n"
]
}
],
"source": [
"# Sanity check\n",
"print(tokenizer.pad_token)\n",
"print(tokenizer.eos_token)"
]
},
{
"cell_type": "markdown",
"id": "d6864b36-6033-445a-b6e2-b6bb02e38e26",
"metadata": {
"id": "d6864b36-6033-445a-b6e2-b6bb02e38e26"
},
"source": [
"## Step 8: Let's Modify the Tokenizer\n",
"\n",
"Indeed, as we saw in Unit 1, the tokenizer splits text into sub-words by default. This is **not** what we want for our new special tokens!\n",
"\n",
"While we segmented our example using `<think>`, `<tool_call>`, and `<tool_response>`, the tokenizer does **not** yet treat them as whole tokens—it still tries to break them down into smaller pieces. To ensure the model correctly interprets our new format, we must **add these tokens** to our tokenizer.\n",
"\n",
"Additionally, since we changed the `chat_template` in our **preprocess** function to format conversations as messages within a prompt, we also need to modify the `chat_template` in the tokenizer to reflect these changes."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "833ba5d6-4c1e-4689-9fed-22cc03d2a63a",
"metadata": {
"tags": [],
"colab": {
"referenced_widgets": [
"fc7eee07d5824955adb7b9bbd025c297"
]
},
"id": "833ba5d6-4c1e-4689-9fed-22cc03d2a63a",
"outputId": "2ef794e9-3e8e-4dec-d31c-b9242386c2d0"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc7eee07d5824955adb7b9bbd025c297",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The new embeddings will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. As described in this article: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. To disable this, use `mean_resizing=False`\n"
]
},
{
"data": {
"text/plain": [
"Gemma2ForCausalLM(\n",
" (model): Gemma2Model(\n",
" (embed_tokens): Embedding(256006, 2304, padding_idx=0)\n",
" (layers): ModuleList(\n",
" (0-25): 26 x Gemma2DecoderLayer(\n",
" (self_attn): Gemma2Attention(\n",
" (q_proj): Linear(in_features=2304, out_features=2048, bias=False)\n",
" (k_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
" (v_proj): Linear(in_features=2304, out_features=1024, bias=False)\n",
" (o_proj): Linear(in_features=2048, out_features=2304, bias=False)\n",
" (rotary_emb): Gemma2RotaryEmbedding()\n",
" )\n",
" (mlp): Gemma2MLP(\n",
" (gate_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
" (up_proj): Linear(in_features=2304, out_features=9216, bias=False)\n",
" (down_proj): Linear(in_features=9216, out_features=2304, bias=False)\n",
" (act_fn): PytorchGELUTanh()\n",
" )\n",
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" )\n",
" )\n",
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" )\n",
" (lm_head): Linear(in_features=2304, out_features=256006, bias=False)\n",
")"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"class ChatmlSpecialTokens(str, Enum):\n",
" tools = \"<tools>\"\n",
" eotools = \"</tools>\"\n",
" think = \"<think>\"\n",
" eothink = \"</think>\"\n",
" tool_call=\"<tool_call>\"\n",
" eotool_call=\"</tool_call>\"\n",
" tool_response=\"<tool_reponse>\"\n",
" eotool_response=\"</tool_reponse>\"\n",
" pad_token = \"<pad>\"\n",
" eos_token = \"<eos>\"\n",
" @classmethod\n",
" def list(cls):\n",
" return [c.value for c in cls]\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\n",
" model_name,\n",
" pad_token=ChatmlSpecialTokens.pad_token.value,\n",
" additional_special_tokens=ChatmlSpecialTokens.list()\n",
" )\n",
"tokenizer.chat_template = \"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{{ '<start_of_turn>' + message['role'] + '\\n' + message['content'] | trim + '<end_of_turn><eos>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}\"\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(model_name,\n",
" attn_implementation='eager',\n",
" device_map=\"auto\")\n",
"model.resize_token_embeddings(len(tokenizer))\n",
"model.to(torch.bfloat16)\n"
]
},
{
"cell_type": "markdown",
"source": [
"## Step 9: Let's configure the LoRA\n",
"\n",
"ADD COMMENTS JOFFREY"
],
"metadata": {
"id": "X6DBY8AqxFLL"
},
"id": "X6DBY8AqxFLL"
},
{
"cell_type": "code",
"execution_count": null,
"id": "482d36ab-e326-4fd7-bc59-425abcca55e7",
"metadata": {
"tags": [],
"id": "482d36ab-e326-4fd7-bc59-425abcca55e7"
},
"outputs": [],
"source": [
"from peft import LoraConfig\n",
"\n",
"# TODO: Configure LoRA parameters\n",
"# r: rank dimension for LoRA update matrices (smaller = more compression)\n",
"rank_dimension = 16\n",
"# lora_alpha: scaling factor for LoRA layers (higher = stronger adaptation)\n",
"lora_alpha = 64\n",
"# lora_dropout: dropout probability for LoRA layers (helps prevent overfitting)\n",
"lora_dropout = 0.05\n",
"\n",
"peft_config = LoraConfig(r=rank_dimension,\n",
" lora_alpha=lora_alpha,\n",
" lora_dropout=lora_dropout,\n",
" target_modules=[\"gate_proj\",\"q_proj\",\"lm_head\",\"o_proj\",\"k_proj\",\"embed_tokens\",\"down_proj\",\"up_proj\",\"v_proj\"], # wich layer in the transformers do we target ?\n",
" task_type=TaskType.CAUSAL_LM)"
]
},
{
"cell_type": "markdown",
"source": [
"## Step 10: Let's define the Trainer and the Fine-Tuning hyperparameters\n",
"\n",
"In this step, we define the Trainer, the class that we use to fine-tune our model and the hyperparameters."
],
"metadata": {
"id": "zdDR9hzgxPu2"
},
"id": "zdDR9hzgxPu2"
},
{
"cell_type": "code",
"execution_count": null,
"id": "3598b688-5a6f-437f-95ac-4794688cd38f",
"metadata": {
"tags": [],
"id": "3598b688-5a6f-437f-95ac-4794688cd38f",
"outputId": "515f019f-87b6-40cb-9344-f4c19645e077"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/user/miniconda/lib/python3.9/site-packages/transformers/training_args.py:1568: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
" warnings.warn(\n"
]
}
],
"source": [
"output_dir = \"gemma-2-2B-it-thinking-function_calling\"\n",
"per_device_train_batch_size = 1\n",
"per_device_eval_batch_size = 1\n",
"gradient_accumulation_steps = 4\n",
"logging_steps = 5\n",
"learning_rate = 1e-4\n",
"max_grad_norm = 1.0\n",
"num_train_epochs=1\n",
"warmup_ratio = 0.1\n",
"lr_scheduler_type = \"cosine\"\n",
"max_seq_length = 2048\n",
"\n",
"training_arguments = TrainingArguments(\n",
" output_dir=output_dir,\n",
" per_device_train_batch_size=per_device_train_batch_size,\n",
" per_device_eval_batch_size=per_device_eval_batch_size,\n",
" gradient_accumulation_steps=gradient_accumulation_steps,\n",
" save_strategy=\"no\",\n",
" evaluation_strategy=\"epoch\",\n",
" logging_steps=logging_steps,\n",
" learning_rate=learning_rate,\n",
" max_grad_norm=max_grad_norm,\n",
" weight_decay=0.1,\n",
" warmup_ratio=warmup_ratio,\n",
" lr_scheduler_type=lr_scheduler_type,\n",
" report_to=\"tensorboard\",\n",
" bf16=True,\n",
" hub_private_repo=False,\n",
" push_to_hub=False,\n",
" num_train_epochs=num_train_epochs,\n",
" gradient_checkpointing=True,\n",
" gradient_checkpointing_kwargs={\"use_reentrant\": False}\n",
")"
]
},
{
"cell_type": "markdown",
"source": [
"As Trainer, we use the `SFTTrainer` which is a Supervised Fine-Tuning Trainer."
],
"metadata": {
"id": "59TTqmW2xmV2"
},
"id": "59TTqmW2xmV2"
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba0366b5-c9d0-4f7e-97e0-1f964cfad147",
"metadata": {
"tags": [],
"id": "ba0366b5-c9d0-4f7e-97e0-1f964cfad147",
"outputId": "8b2836b3-3a06-4c05-b046-6c7923911e40"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/user/miniconda/lib/python3.9/site-packages/huggingface_hub/utils/_deprecation.py:100: FutureWarning: Deprecated argument(s) used in '__init__': packing, dataset_text_field, max_seq_length, dataset_kwargs. Will not be supported from version '0.13.0'.\n",
"\n",
"Deprecated positional argument(s) used in SFTTrainer, please use the SFTConfig to set these arguments instead.\n",
" warnings.warn(message, FutureWarning)\n",
"/home/user/miniconda/lib/python3.9/site-packages/transformers/training_args.py:1568: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
" warnings.warn(\n",
"/home/user/miniconda/lib/python3.9/site-packages/trl/trainer/sft_trainer.py:212: UserWarning: You passed a `packing` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
" warnings.warn(\n",
"/home/user/miniconda/lib/python3.9/site-packages/peft/tuners/tuners_utils.py:543: UserWarning: Model with `tie_word_embeddings=True` and the tied_target_modules=['lm_head'] are part of the adapter. This can lead to complications, for example when merging the adapter or converting your model to formats other than safetensors. See for example https://github.com/huggingface/peft/issues/2018.\n",
" warnings.warn(\n",
"/home/user/miniconda/lib/python3.9/site-packages/trl/trainer/sft_trainer.py:300: UserWarning: You passed a `max_seq_length` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
" warnings.warn(\n",
"/home/user/miniconda/lib/python3.9/site-packages/trl/trainer/sft_trainer.py:328: UserWarning: You passed a `dataset_text_field` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
" warnings.warn(\n",
"/home/user/miniconda/lib/python3.9/site-packages/trl/trainer/sft_trainer.py:334: UserWarning: You passed a `dataset_kwargs` argument to the SFTTrainer, the value you passed will override the one in the `SFTConfig`.\n",
" warnings.warn(\n",
"/home/user/miniconda/lib/python3.9/site-packages/trl/trainer/sft_trainer.py:403: UserWarning: You passed a processing_class with `padding_side` not equal to `right` to the SFTTrainer. This might lead to some unexpected behaviour due to overflow issues when training a model in half-precision. You might consider adding `processing_class.padding_side = 'right'` to your code.\n",
" warnings.warn(\n"
]
}
],
"source": [
"trainer = SFTTrainer(\n",
" model=model,\n",
" args=training_arguments,\n",
" train_dataset=dataset[\"train\"],\n",
" eval_dataset=dataset[\"test\"],\n",
" tokenizer=tokenizer,\n",
" packing=True,\n",
" dataset_text_field=\"content\",\n",
" max_seq_length=max_seq_length,\n",
" peft_config=peft_config,\n",
" dataset_kwargs={\n",
" \"append_concat_token\": False,\n",
" \"add_special_tokens\": False,\n",
" },\n",
")"
]
},
{
"cell_type": "markdown",
"source": [
"Here, we launch the training 🔥. Perfect time for you to pause and grab a coffee ☕."
],
"metadata": {
"id": "MtHjukK9xviB"
},
"id": "MtHjukK9xviB"
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e2df2e9-a82b-4540-aa89-1b40b70a7781",
"metadata": {
"tags": [],
"id": "9e2df2e9-a82b-4540-aa89-1b40b70a7781",
"outputId": "8ad7e555-678b-4904-aa6b-000b619c9341"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.\n"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='389' max='389' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [389/389 14:14, Epoch 0/1]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Epoch</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>0.294600</td>\n",
" <td>0.289091</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/user/miniconda/lib/python3.9/site-packages/peft/utils/save_and_load.py:230: UserWarning: Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.\n",
" warnings.warn(\"Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.\")\n"
]
}
],
"source": [
"trainer.train()\n",
"trainer.save_model()"
]
},
{
"cell_type": "markdown",
"id": "1d7ea3ab-7c8c-47ad-acd2-99fbe5b68393",
"metadata": {
"tags": [],
"id": "1d7ea3ab-7c8c-47ad-acd2-99fbe5b68393"
},
"source": [
"## Step 11: Let's push the Model and the Tokenizer to the Hub\n",
"\n",
"Let's push our model and out tokenizer to the Hub ! The model will be pushed under your username + the output_dir that we specified earlier."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "370af020-9319-4ff7-bea1-2842a4847caa",
"metadata": {
"tags": [],
"colab": {
"referenced_widgets": [
"68b34e3d2eae4f24b83fa65cf5815738",
"15e7c632053c4ed88267061a8112d641",
"047ebf7fda8643c090129bc2b86a7e3e",
"ef5dab829e8b491581f6dae2b7718113",
"97ba6384a2f94db0880a17ff433a8ed9",
"ba0c0c53b23047ac9336fdbf8597f32f",
"8a033d5bd32b4a969fd5af612c550243",
"714d4a40a67a4763ba8f7ae029befbd7",
"52451f392b434fb39b882c9f094bd995",
"08c2ca8a719e4142bd877ae94d242f2e",
"02e660bd44a7414fae439751e9ffa1f2"
]
},
"id": "370af020-9319-4ff7-bea1-2842a4847caa",
"outputId": "f5797c01-306d-48ee-a009-3c115f5b1ca5"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68b34e3d2eae4f24b83fa65cf5815738",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"adapter_model.safetensors: 0%| | 0.00/2.48G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "15e7c632053c4ed88267061a8112d641",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739725934.r-jofthomas-fttest-0ihwmg95-70a55-shjb6: 0%| | 0.00/21.5k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "047ebf7fda8643c090129bc2b86a7e3e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739728410.r-jofthomas-fttest-0ihwmg95-70a55-shjb6: 0%| | 0.00/22.1k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef5dab829e8b491581f6dae2b7718113",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739724308.r-jofthomas-fttest-0ihwmg95-70a55-shjb6: 0%| | 0.00/21.5k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "97ba6384a2f94db0880a17ff433a8ed9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload 10 LFS files: 0%| | 0/10 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ba0c0c53b23047ac9336fdbf8597f32f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739727155.r-jofthomas-fttest-0ihwmg95-70a55-shjb6: 0%| | 0.00/22.1k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8a033d5bd32b4a969fd5af612c550243",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739809832.r-jofthomas-fttest-x95brwd3-5f8b4-w4aox: 0%| | 0.00/22.5k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "714d4a40a67a4763ba8f7ae029befbd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739860009.r-jofthomas-fttest-8up4ewpe-95503-rafjw: 0%| | 0.00/22.5k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52451f392b434fb39b882c9f094bd995",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"events.out.tfevents.1739862234.r-jofthomas-fttest-8up4ewpe-95503-rafjw: 0%| | 0.00/22.5k [00:00<?, …"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08c2ca8a719e4142bd877ae94d242f2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer.json: 0%| | 0.00/34.4M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "02e660bd44a7414fae439751e9ffa1f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"training_args.bin: 0%| | 0.00/5.69k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling/commit/1fd13c76657670ca45620b6893e4fbfda0207a91', commit_message='End of training', commit_description='', oid='1fd13c76657670ca45620b6893e4fbfda0207a91', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling', endpoint='https://huggingface.co', repo_type='model', repo_id='Jofthomas/gemma-2-2B-it-thinking-function_calling'), pr_revision=None, pr_num=None)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.push_to_hub()"
]
},
{
"cell_type": "markdown",
"id": "83a443ce-5072-4777-8621-cd4faf840410",
"metadata": {
"id": "83a443ce-5072-4777-8621-cd4faf840410"
},
"source": [
"Since we also modified the **chat_template** Which is contained in the tokenizer, let's also push the tokenizer with the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9d9a86b3-f23d-4060-a97f-b868a7c38c36",
"metadata": {
"tags": [],
"id": "9d9a86b3-f23d-4060-a97f-b868a7c38c36",
"outputId": "2726291c-5720-473e-ed92-e4f425f82bae"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"No files have been modified since last commit. Skipping to prevent empty commit.\n"
]
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling/commit/50ea3ee78ed458c6d773f53b326531becdda0211', commit_message='Upload tokenizer', commit_description='', oid='50ea3ee78ed458c6d773f53b326531becdda0211', pr_url=None, repo_url=RepoUrl('https://huggingface.co/Jofthomas/gemma-2-2B-it-thinking-function_calling', endpoint='https://huggingface.co', repo_type='model', repo_id='Jofthomas/gemma-2-2B-it-thinking-function_calling'), pr_revision=None, pr_num=None)"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.eos_token = \"<eos>\"\n",
"# push the tokenizer to hub ( replace with your username and your previously specified\n",
"tokenizer.push_to_hub(f\"username/{output_dir}\", token=True)"
]
},
{
"cell_type": "markdown",
"id": "76d275ce-a3e6-4d30-8d8c-0ee274de5370",
"metadata": {
"id": "76d275ce-a3e6-4d30-8d8c-0ee274de5370"
},
"source": [
"## Step 12: Let's now test our model !\n",
"\n",
"To so, we will :\n",
"\n",
"1. Load the adapter from the hub !\n",
"2. Load the base model : **\"google/gemma-2-2b-it\"** from the hub\n",
"3."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56b89825-70ac-42c1-934c-26e2d54f3b7b",
"metadata": {
"tags": [],
"colab": {
"referenced_widgets": [
"390c54434b6448b988ce015eeafe34c9",
"35b2fe2d357b46488ccef710f2a9bfd7",
"9c313149d4324bdaa9c8ddc373964d18"
]
},
"id": "56b89825-70ac-42c1-934c-26e2d54f3b7b",
"outputId": "a4cd00b8-61fa-4522-d563-c4ef7e18807d"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "390c54434b6448b988ce015eeafe34c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"adapter_config.json: 0%| | 0.00/829 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35b2fe2d357b46488ccef710f2a9bfd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9c313149d4324bdaa9c8ddc373964d18",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"adapter_model.safetensors: 0%| | 0.00/2.48G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"PeftModelForCausalLM(\n",
" (base_model): LoraModel(\n",
" (model): Gemma2ForCausalLM(\n",
" (model): Gemma2Model(\n",
" (embed_tokens): lora.Embedding(\n",
" (base_layer): Embedding(256006, 2304, padding_idx=0)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict()\n",
" (lora_B): ModuleDict()\n",
" (lora_embedding_A): ParameterDict( (default): Parameter containing: [torch.cuda.BFloat16Tensor of size 16x256006 (cuda:0)])\n",
" (lora_embedding_B): ParameterDict( (default): Parameter containing: [torch.cuda.BFloat16Tensor of size 2304x16 (cuda:0)])\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (layers): ModuleList(\n",
" (0-25): 26 x Gemma2DecoderLayer(\n",
" (self_attn): Gemma2Attention(\n",
" (q_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=2304, out_features=2048, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=2048, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (k_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=2304, out_features=1024, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=1024, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (v_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=2304, out_features=1024, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=1024, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (o_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=2048, out_features=2304, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2048, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=2304, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (rotary_emb): Gemma2RotaryEmbedding()\n",
" )\n",
" (mlp): Gemma2MLP(\n",
" (gate_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=2304, out_features=9216, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=9216, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (up_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=2304, out_features=9216, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=9216, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (down_proj): lora.Linear(\n",
" (base_layer): Linear(in_features=9216, out_features=2304, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=9216, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=2304, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" (act_fn): PytorchGELUTanh()\n",
" )\n",
" (input_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (pre_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (post_feedforward_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" (post_attention_layernorm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" )\n",
" )\n",
" (norm): Gemma2RMSNorm((2304,), eps=1e-06)\n",
" )\n",
" (lm_head): lora.Linear(\n",
" (base_layer): Linear(in_features=2304, out_features=256006, bias=False)\n",
" (lora_dropout): ModuleDict(\n",
" (default): Dropout(p=0.05, inplace=False)\n",
" )\n",
" (lora_A): ModuleDict(\n",
" (default): Linear(in_features=2304, out_features=16, bias=False)\n",
" )\n",
" (lora_B): ModuleDict(\n",
" (default): Linear(in_features=16, out_features=256006, bias=False)\n",
" )\n",
" (lora_embedding_A): ParameterDict()\n",
" (lora_embedding_B): ParameterDict()\n",
" (lora_magnitude_vector): ModuleDict()\n",
" )\n",
" )\n",
" )\n",
")"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from peft import PeftModel, PeftConfig\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n",
"from datasets import load_dataset\n",
"import torch\n",
"\n",
"bnb_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_quant_type=\"nf4\",\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_use_double_quant=True,\n",
" )\n",
"\n",
"peft_model_id = f\"username/{output_dir}\" # replace with your newly trained adapter\n",
"device = \"auto\"\n",
"config = PeftConfig.from_pretrained(peft_model_id)\n",
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,\n",
" device_map=\"auto\",\n",
" )\n",
"tokenizer = AutoTokenizer.from_pretrained(peft_model_id)\n",
"model.resize_token_embeddings(len(tokenizer))\n",
"model = PeftModel.from_pretrained(model, peft_model_id)\n",
"model.to(torch.bfloat16)\n",
"model.eval()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69e83af9-f967-4e5a-842b-0daed13f7957",
"metadata": {
"tags": [],
"id": "69e83af9-f967-4e5a-842b-0daed13f7957",
"outputId": "979b2ee9-fe5b-49b1-aed5-e28f0239a709"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<bos><start_of_turn>human\n",
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
"<tool_call>\n",
"{tool_call}\n",
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
"\n",
"Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"<think>Alright, so I'm looking at this scenario where the user needs help converting 500 USD to Euros. Let's break it down step by step to understand how to approach this.\n",
"\n",
"First, the user has asked for conversion from USD to EUR. I know there's a specific tool available for currency conversion called `convert_currency`. This tool requires three parameters: amount, from_currency, and to_currency. In the user's message, they've provided all necessary details—500 USD and the desire to convert to Euros. \n",
"\n",
"I don't need to make any assumptions here because the user has already provided the exact amount and the target currency. My next step is to prepare the function call with the correct parameters. So, I'll structure the request with the amount as 500, from_currency as USD, and to_currency as EUR. \n",
"\n",
"This will be sent in JSON format as specified, ensuring that the tool receives all the necessary information to perform the conversion accurately. Once the function is called, it should return the converted amount, which I can then present back to the user.\n",
"</think><tool_call>\n",
"{'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}}\n",
"</tool_call><end_of_turn><eos>\n",
"<start_of_turn>tool\n",
"<tool_response>\n",
"{'converted_amount': 420.5, 'from_currency': 'USD', 'to_currency': 'EUR'}\n",
"</tool_response><end_of_turn><eos>\n",
"<start_of_turn>model\n",
"Sure, 500 USD is approximately 420.50 Euros.<end_of_turn><eos>\n",
"<start_of_turn>human\n",
"That's great! Now, can you convert 1000 Euros back to USD?<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"<think>Okay, so I'm trying to figure out how to handle the next function call based on the conversation and the previous steps. Let me see...\n",
"\n",
"In the conversation, the user first asked to convert 500 USD to Euros, and the model used the `convert_currency` function with the parameters amount=500, from_currency=USD, to_currency=EUR. Then, after getting the response, the model provided the converted amount. Now, the user is asking to convert 1000 Euros back to USD. \n",
"\n",
"So, the user's request is clear: convert 1000 EUR to USD. Since the function `convert_currency` is designed to handle currency conversions, and it requires amount, from_currency, and to_currency as parameters, it makes sense to call this function again with the updated values. \n",
"\n",
"The amount is 1000, from_currency should be EUR because the user is converting from Euros, and to_currency should be USD because they want the result in US Dollars. I don't need to make any assumptions here because all the required information is provided by the user. \n",
"\n",
"I'll structure the function call with these parameters. This should give the user the accurate converted amount from Euros to USD. Once the tool processes this, the model can present the result back to the user.\n",
"</think><tool_call>\n",
"{'name': 'convert_currency', 'arguments': {'amount': 1000, 'from_currency': 'EUR', 'to_currency': 'USD'}}\n",
"</tool_call><end_of_turn><eos>\n",
"<start_of_turn>tool\n",
"<tool_response>\n",
"{'converted_amount': 1190.0, 'from_currency': 'EUR', 'to_currency': 'USD'}\n",
"</tool_response><end_of_turn><eos>\n",
"<start_of_turn>model\n",
"1000 Euros is approximately 1190.00 USD.<end_of_turn><eos>\n",
"<start_of_turn>human\n",
"Thank you for your help!<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"You're welcome! If you have any other questions, feel free to ask.<end_of_turn><eos>\n",
"\n"
]
}
],
"source": [
"print(dataset[\"test\"][8][\"content\"])"
]
},
{
"cell_type": "markdown",
"id": "b47fd511-ea00-47ce-8618-6e78e25672b2",
"metadata": {
"id": "b47fd511-ea00-47ce-8618-6e78e25672b2"
},
"source": [
"### Testing the model 🚀\n",
"\n",
"In that case, we will take the start of one of the samples from the test set and hope that it will generate the expected output.\n",
"\n",
"Since we want to test the function-calling capacities of our newly fine-tuned model, the input will be a user message with the available tools, a\n",
"\n",
"\n",
"### Disclaimer ⚠️\n",
"\n",
"The dataset we’re using **does not contain sufficient training data** and is purely for **educational purposes**. As a result, **your trained model’s outputs may differ** from the examples shown in this course. **Don’t be discouraged** if your results vary—our primary goal here is to illustrate the core concepts rather than produce a fully optimized or production-ready model.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37bf938d-08fa-4577-9966-0238339afcdb",
"metadata": {
"tags": [],
"id": "37bf938d-08fa-4577-9966-0238339afcdb",
"outputId": "e97e7a1e-5ab2-46a2-dc3a-f436964fe004"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<bos><start_of_turn>human\n",
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
"<tool_call>\n",
"{tool_call}\n",
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
"\n",
"Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"<think>Okay, so the user is asking to convert 500 USD to Euros. I need to figure out how to respond. Looking at the available tools, there's a function called convert_currency which does exactly that. It takes an amount, the source currency, and the target currency. The user provided all the necessary details: 500, USD, and EUR. So, I should call convert_currency with these parameters. That should give the user the converted amount they need.\n",
"</think><tool_call>\n",
"{'name': 'convert_currency', 'arguments': {'amount': 500, 'from_currency': 'USD', 'to_currency': 'EUR'}}\n",
"</tool_call><end_of_turn><eos>\n"
]
}
],
"source": [
"prompt=\"\"\"<bos><start_of_turn>human\n",
"You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags.You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.Here are the available tools:<tools> [{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert from one currency to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to convert'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'calculate_distance', 'description': 'Calculate the distance between two locations', 'parameters': {'type': 'object', 'properties': {'start_location': {'type': 'string', 'description': 'The starting location'}, 'end_location': {'type': 'string', 'description': 'The ending location'}}, 'required': ['start_location', 'end_location']}}}] </tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:\n",
"<tool_call>\n",
"{tool_call}\n",
"</tool_call>Also, before making a call to a function take the time to plan the function to take. Make that thinking process between <think>{your thoughts}</think>\n",
"\n",
"Hi, I need to convert 500 USD to Euros. Can you help me with that?<end_of_turn><eos>\n",
"<start_of_turn>model\n",
"<think>\"\"\"\n",
"\n",
"inputs = tokenizer(prompt, return_tensors=\"pt\", add_special_tokens=False)\n",
"inputs = {k: v.to(\"cuda\") for k,v in inputs.items()}\n",
"outputs = model.generate(**inputs,\n",
" max_new_tokens=300,\n",
" do_sample=True,\n",
" top_p=0.65,\n",
" temperature=0.01,\n",
" repetition_penalty=1.0,\n",
" eos_token_id=tokenizer.eos_token_id)\n",
"print(tokenizer.decode(outputs[0]))"
]
},
{
"cell_type": "markdown",
"source": [
"Congratulations on finishing this first Bonus Unit 🥳\n",
"\n",
"You've just **mastered what Function-Calling is and how to fine-tune your model to do Function-Calling**!\n",
"\n",
"If it's the first time you do this, it's normal that you're feeling puzzled. Take time to check the documentation and understand each part of the code and why we did it this way.\n",
"\n",
"Also, don't hesitate to try to **fine-tune different models**. The **best way to learn is by trying.**\n",
"\n",
"### Keep Learning, Stay Awesome 🤗"
],
"metadata": {
"id": "xWewPCZOyfJQ"
},
"id": "xWewPCZOyfJQ"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
},
"colab": {
"provenance": []
}
},
"nbformat": 4,
"nbformat_minor": 5
} |