nielsr HF Staff commited on
Commit
9753821
·
verified ·
1 Parent(s): 2fa3291

Add pipeline tag text-ranking

Browse files

This PR adds the `pipeline_tag: text-ranking` to the model card metadata to improve the model's discoverability on the Hugging Face Hub. This tag ensures that the model appears in relevant search results for researchers working on text ranking tasks.

Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -1,21 +1,22 @@
1
  ---
 
 
2
  library_name: treehop-rag
3
  license: mit
 
4
  tags:
5
  - Information Retrieval
6
  - Retrieval-Augmented Generation
7
  - model_hub_mixin
8
  - multi-hop question answering
9
  - pytorch_model_hub_mixin
10
- base_model:
11
- - BAAI/bge-m3
12
  ---
13
 
14
-
15
  # TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering
16
 
17
 
18
  [![arXiv](https://img.shields.io/badge/arXiv-2504.20114-b31b1b.svg?style=flat)](https://arxiv.org/abs/2504.20114)
 
19
  [![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://img.shields.io/badge/license-MIT-blue)
20
  [![Python 3.9+](https://img.shields.io/badge/Python-3.9+-green.svg)](https://www.python.org/downloads/)
21
 
@@ -36,6 +37,7 @@ base_model:
36
  ## Introduction
37
  TreeHop is a lightweight, embedding-level framework designed to address the computational inefficiencies of traditional recursive retrieval paradigm in the realm of Retrieval-Augmented Generation (RAG). By eliminating the need for iterative LLM-based query rewriting, TreeHop significantly reduces latency while maintaining state-of-the-art performance. It achieves this through dynamic query embedding updates and pruning strategies, enabling a streamlined "Retrieve-Embed-Retrieve" workflow.
38
 
 
39
 
40
  ## Why TreeHop for Multi-hop Retrieval?
41
  - **Handle Complex Queries**: Real-world questions often require multiple hops to retrieve relevant information, which traditional retrieval methods struggle with.
@@ -43,6 +45,7 @@ TreeHop is a lightweight, embedding-level framework designed to address the comp
43
  - **Speed**: 99% faster inference compared to iterative LLM approaches, ideal for industrial applications where response speed is crucial.
44
  - **Performant**: Maintains high recall with controlled number of retrieved passages, ensuring relevance without overwhelming the system.
45
 
 
46
 
47
 
48
  ## System Requirement
 
1
  ---
2
+ base_model:
3
+ - BAAI/bge-m3
4
  library_name: treehop-rag
5
  license: mit
6
+ pipeline_tag: text-ranking
7
  tags:
8
  - Information Retrieval
9
  - Retrieval-Augmented Generation
10
  - model_hub_mixin
11
  - multi-hop question answering
12
  - pytorch_model_hub_mixin
 
 
13
  ---
14
 
 
15
  # TreeHop: Generate and Filter Next Query Embeddings Efficiently for Multi-hop Question Answering
16
 
17
 
18
  [![arXiv](https://img.shields.io/badge/arXiv-2504.20114-b31b1b.svg?style=flat)](https://arxiv.org/abs/2504.20114)
19
+ [![HuggingFace](https://img.shields.io/badge/HuggingFace-Model-blue.svg)](https://huggingface.co/allen-li1231/treehop-rag)
20
  [![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://img.shields.io/badge/license-MIT-blue)
21
  [![Python 3.9+](https://img.shields.io/badge/Python-3.9+-green.svg)](https://www.python.org/downloads/)
22
 
 
37
  ## Introduction
38
  TreeHop is a lightweight, embedding-level framework designed to address the computational inefficiencies of traditional recursive retrieval paradigm in the realm of Retrieval-Augmented Generation (RAG). By eliminating the need for iterative LLM-based query rewriting, TreeHop significantly reduces latency while maintaining state-of-the-art performance. It achieves this through dynamic query embedding updates and pruning strategies, enabling a streamlined "Retrieve-Embed-Retrieve" workflow.
39
 
40
+ ![Simplified Iteration Enabled by TreeHop in RAG system](pics/TreeHop_iteration.png)
41
 
42
  ## Why TreeHop for Multi-hop Retrieval?
43
  - **Handle Complex Queries**: Real-world questions often require multiple hops to retrieve relevant information, which traditional retrieval methods struggle with.
 
45
  - **Speed**: 99% faster inference compared to iterative LLM approaches, ideal for industrial applications where response speed is crucial.
46
  - **Performant**: Maintains high recall with controlled number of retrieved passages, ensuring relevance without overwhelming the system.
47
 
48
+ ![Main Experiment](pics/main_experiment.png)
49
 
50
 
51
  ## System Requirement