Commit
·
04b813d
1
Parent(s):
fac39a6
Pushing model and tokenizer to main branch
Browse files- README.md +208 -0
- config.json +52 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +236 -0
README.md
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- allenai/datadecide
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
---
|
8 |
+

|
9 |
+
|
10 |
+
Because large language models are expensive to pretrain on different corpora, using smaller scale experiments to decide on data is crucial for reducing costs. Do datasets yielding better performance at small scale do the same at larger scale? And which predictive methods are most accurate? We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens and model sizes up to 1B parameters. We release models, data, and evaluations in our DATADECIDE Suite as the most extensive openly available sweep of data decisions over scales and random seeds. We find that predictions based on experiments at single, rather than multiple, scales are most efficient. For example, 150M models trained with < 2% compute of 1B targets correctly decide 80% of comparisons and make better decisions than dividing the same compute budget between experiments at multiple scales and fitting scaling trends. While none of the 8 baseline scaling law methods we try exceed the compute-decision frontier established by single scale predictions, DATADECIDE can be used to measure improvements in future scaling prediction methods. We also identify that among 10 multiple choice benchmarks, MMLU and arc easy are highly predictable with as little as 4 orders of magnitude less compute, and that code evaluations MBPP and åçHumanEval can also be made predictable using continuous proxy metrics.
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# Model Card for Model ID
|
16 |
+
|
17 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
|
23 |
+
### Model Description
|
24 |
+
|
25 |
+
<!-- Provide a longer summary of what this model is. -->
|
26 |
+
|
27 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
28 |
+
|
29 |
+
- **Developed by:** [More Information Needed]
|
30 |
+
- **Funded by [optional]:** [More Information Needed]
|
31 |
+
- **Shared by [optional]:** [More Information Needed]
|
32 |
+
- **Model type:** [More Information Needed]
|
33 |
+
- **Language(s) (NLP):** [More Information Needed]
|
34 |
+
- **License:** [More Information Needed]
|
35 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
36 |
+
|
37 |
+
### Model Sources [optional]
|
38 |
+
|
39 |
+
<!-- Provide the basic links for the model. -->
|
40 |
+
|
41 |
+
- **Repository:** [More Information Needed]
|
42 |
+
- **Paper [optional]:** [More Information Needed]
|
43 |
+
- **Demo [optional]:** [More Information Needed]
|
44 |
+
|
45 |
+
## Uses
|
46 |
+
|
47 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
48 |
+
|
49 |
+
### Direct Use
|
50 |
+
|
51 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
52 |
+
|
53 |
+
[More Information Needed]
|
54 |
+
|
55 |
+
### Downstream Use [optional]
|
56 |
+
|
57 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
58 |
+
|
59 |
+
[More Information Needed]
|
60 |
+
|
61 |
+
### Out-of-Scope Use
|
62 |
+
|
63 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
64 |
+
|
65 |
+
[More Information Needed]
|
66 |
+
|
67 |
+
## Bias, Risks, and Limitations
|
68 |
+
|
69 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Recommendations
|
74 |
+
|
75 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
76 |
+
|
77 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
78 |
+
|
79 |
+
## How to Get Started with the Model
|
80 |
+
|
81 |
+
Use the code below to get started with the model.
|
82 |
+
|
83 |
+
[More Information Needed]
|
84 |
+
|
85 |
+
## Training Details
|
86 |
+
|
87 |
+
### Training Data
|
88 |
+
|
89 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
90 |
+
|
91 |
+
[More Information Needed]
|
92 |
+
|
93 |
+
### Training Procedure
|
94 |
+
|
95 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
96 |
+
|
97 |
+
#### Preprocessing [optional]
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
|
102 |
+
#### Training Hyperparameters
|
103 |
+
|
104 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
105 |
+
|
106 |
+
#### Speeds, Sizes, Times [optional]
|
107 |
+
|
108 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
109 |
+
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
## Evaluation
|
113 |
+
|
114 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
115 |
+
|
116 |
+
### Testing Data, Factors & Metrics
|
117 |
+
|
118 |
+
#### Testing Data
|
119 |
+
|
120 |
+
<!-- This should link to a Dataset Card if possible. -->
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
#### Factors
|
125 |
+
|
126 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Metrics
|
131 |
+
|
132 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
### Results
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
#### Summary
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
## Model Examination [optional]
|
145 |
+
|
146 |
+
<!-- Relevant interpretability work for the model goes here -->
|
147 |
+
|
148 |
+
[More Information Needed]
|
149 |
+
|
150 |
+
## Environmental Impact
|
151 |
+
|
152 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
153 |
+
|
154 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
155 |
+
|
156 |
+
- **Hardware Type:** [More Information Needed]
|
157 |
+
- **Hours used:** [More Information Needed]
|
158 |
+
- **Cloud Provider:** [More Information Needed]
|
159 |
+
- **Compute Region:** [More Information Needed]
|
160 |
+
- **Carbon Emitted:** [More Information Needed]
|
161 |
+
|
162 |
+
## Technical Specifications [optional]
|
163 |
+
|
164 |
+
### Model Architecture and Objective
|
165 |
+
|
166 |
+
[More Information Needed]
|
167 |
+
|
168 |
+
### Compute Infrastructure
|
169 |
+
|
170 |
+
[More Information Needed]
|
171 |
+
|
172 |
+
#### Hardware
|
173 |
+
|
174 |
+
[More Information Needed]
|
175 |
+
|
176 |
+
#### Software
|
177 |
+
|
178 |
+
[More Information Needed]
|
179 |
+
|
180 |
+
## Citation [optional]
|
181 |
+
|
182 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
183 |
+
|
184 |
+
**BibTeX:**
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
**APA:**
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Glossary [optional]
|
193 |
+
|
194 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
195 |
+
|
196 |
+
[More Information Needed]
|
197 |
+
|
198 |
+
## More Information [optional]
|
199 |
+
|
200 |
+
[More Information Needed]
|
201 |
+
|
202 |
+
## Model Card Authors [optional]
|
203 |
+
|
204 |
+
[More Information Needed]
|
205 |
+
|
206 |
+
## Model Card Contact
|
207 |
+
|
208 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_type": "swiglu",
|
3 |
+
"alibi": false,
|
4 |
+
"alibi_bias_max": 8.0,
|
5 |
+
"architectures": [
|
6 |
+
"OLMoForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"attention_layer_norm": false,
|
10 |
+
"attention_layer_norm_with_affine": false,
|
11 |
+
"bias_for_layer_norm": false,
|
12 |
+
"block_group_size": 1,
|
13 |
+
"block_type": "sequential",
|
14 |
+
"clip_qkv": null,
|
15 |
+
"d_model": 208,
|
16 |
+
"emb_init_std": null,
|
17 |
+
"embedding_dropout": 0.0,
|
18 |
+
"embedding_layer_norm": false,
|
19 |
+
"embedding_size": 50304,
|
20 |
+
"eos_token_id": 50279,
|
21 |
+
"flash_attention": true,
|
22 |
+
"include_bias": false,
|
23 |
+
"init_cutoff_factor": 3.0,
|
24 |
+
"init_device": "cuda",
|
25 |
+
"init_fn": "normal",
|
26 |
+
"init_std": 0.02,
|
27 |
+
"layer_norm_eps": 1e-06,
|
28 |
+
"layer_norm_type": "rms",
|
29 |
+
"layer_norm_with_affine": true,
|
30 |
+
"max_sequence_length": 2048,
|
31 |
+
"mlp_hidden_size": null,
|
32 |
+
"mlp_ratio": 8,
|
33 |
+
"model_type": "hf_olmo",
|
34 |
+
"multi_query_attention": null,
|
35 |
+
"n_heads": 8,
|
36 |
+
"n_kv_heads": null,
|
37 |
+
"n_layers": 8,
|
38 |
+
"norm_after": false,
|
39 |
+
"pad_token_id": 1,
|
40 |
+
"precision": "amp_bf16",
|
41 |
+
"residual_dropout": 0.0,
|
42 |
+
"rope": true,
|
43 |
+
"rope_full_precision": true,
|
44 |
+
"rope_theta": 10000,
|
45 |
+
"scale_emb_init": false,
|
46 |
+
"scale_logits": false,
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"transformers_version": "4.50.3",
|
49 |
+
"use_cache": true,
|
50 |
+
"vocab_size": 50280,
|
51 |
+
"weight_tying": false
|
52 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 50279,
|
4 |
+
"pad_token_id": 1,
|
5 |
+
"transformers_version": "4.50.3"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:308445f5696441952c61321a03bfda630554912871cc64643634368c96ed3713
|
3 |
+
size 105876848
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": {
|
10 |
+
"content": "<|padding|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
}
|
227 |
+
},
|
228 |
+
"clean_up_tokenization_spaces": false,
|
229 |
+
"eos_token": "<|endoftext|>",
|
230 |
+
"extra_special_tokens": {},
|
231 |
+
"max_length": null,
|
232 |
+
"model_max_length": 1000000000000000019884624838656,
|
233 |
+
"pad_token": "<|padding|>",
|
234 |
+
"tokenizer_class": "OLMoTokenizer",
|
235 |
+
"truncation": "right"
|
236 |
+
}
|