--- license: bsd-3-clause library_name: peft tags: - generated_from_trainer datasets: - fals3/methods2test_small metrics: - accuracy base_model: Salesforce/codegen-350M-multi model-index: - name: output results: - task: type: text-generation name: Causal Language Modeling dataset: name: fals3/methods2test_small fm+fc+c+m+f+t+tc type: fals3/methods2test_small args: fm+fc+c+m+f+t+tc metrics: - type: accuracy value: 0.6807527762973363 name: Accuracy --- [Visualize in Weights & Biases](https://wandb.ai/fals3/methods2test_small/runs/entir0q9) # output This model is a fine-tuned version of [Salesforce/codegen-350M-multi](https://huggingface.co/Salesforce/codegen-350M-multi) on the fals3/methods2test_small fm+fc+c+m+f+t+tc dataset. It achieves the following results on the evaluation set: - Loss: 0.7674 - Accuracy: 0.6808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.41.0.dev0 - Pytorch 2.2.1+cu118 - Datasets 2.17.1 - Tokenizers 0.19.1