diff --git "a/llama_FFN_PF_lut8_chunk_04of04.mlmodelc/model.mil" "b/llama_FFN_PF_lut8_chunk_04of04.mlmodelc/model.mil" new file mode 100644--- /dev/null +++ "b/llama_FFN_PF_lut8_chunk_04of04.mlmodelc/model.mil" @@ -0,0 +1,2865 @@ +program(1.3) +[buildInfo = dict({{"coremlc-component-MIL", "3404.16.1"}, {"coremlc-version", "3404.23.1"}})] +{ + func infer(tensor causal_mask, tensor current_pos, tensor hidden_states, state> model_model_kv_cache_0, tensor position_ids) { + tensor model_model_layers_21_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9437312))))[name = string("model_model_layers_21_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_21_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9633984))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(12779776))))[name = string("model_model_layers_21_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_21_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(12845376))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(15991168))))[name = string("model_model_layers_21_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_21_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16056768))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41222656))))[name = string("model_model_layers_21_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_21_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41747008))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(66912896))))[name = string("model_model_layers_21_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_21_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67437248))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92603136))))[name = string("model_model_layers_21_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_22_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92799808))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(102237056))))[name = string("model_model_layers_22_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_22_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(102433728))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(105579520))))[name = string("model_model_layers_22_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_22_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(105645120))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(108790912))))[name = string("model_model_layers_22_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_22_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(108856512))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(134022400))))[name = string("model_model_layers_22_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_22_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(134546752))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(159712640))))[name = string("model_model_layers_22_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_22_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(160236992))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(185402880))))[name = string("model_model_layers_22_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_23_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(185599552))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(195036800))))[name = string("model_model_layers_23_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_23_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(195233472))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(198379264))))[name = string("model_model_layers_23_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_23_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(198444864))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(201590656))))[name = string("model_model_layers_23_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_23_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(201656256))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(226822144))))[name = string("model_model_layers_23_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_23_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(227346496))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(252512384))))[name = string("model_model_layers_23_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_23_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(253036736))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278202624))))[name = string("model_model_layers_23_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_24_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278399296))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(287836544))))[name = string("model_model_layers_24_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_24_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(288033216))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291179008))))[name = string("model_model_layers_24_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_24_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291244608))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(294390400))))[name = string("model_model_layers_24_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_24_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(294456000))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(319621888))))[name = string("model_model_layers_24_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_24_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(320146240))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(345312128))))[name = string("model_model_layers_24_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_24_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(345836480))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(371002368))))[name = string("model_model_layers_24_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_25_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(371199040))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(380636288))))[name = string("model_model_layers_25_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_25_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(380832960))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(383978752))))[name = string("model_model_layers_25_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_25_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(384044352))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(387190144))))[name = string("model_model_layers_25_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_25_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(387255744))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(412421632))))[name = string("model_model_layers_25_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_25_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(412945984))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(438111872))))[name = string("model_model_layers_25_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_25_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(438636224))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(463802112))))[name = string("model_model_layers_25_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_26_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(463998784))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(473436032))))[name = string("model_model_layers_26_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_26_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(473632704))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(476778496))))[name = string("model_model_layers_26_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_26_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(476844096))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(479989888))))[name = string("model_model_layers_26_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_26_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(480055488))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(505221376))))[name = string("model_model_layers_26_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_26_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(505745728))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(530911616))))[name = string("model_model_layers_26_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_26_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(531435968))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(556601856))))[name = string("model_model_layers_26_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_27_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(556798528))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(566235776))))[name = string("model_model_layers_27_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_27_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(566432448))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(569578240))))[name = string("model_model_layers_27_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_27_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(569643840))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(572789632))))[name = string("model_model_layers_27_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_27_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(572855232))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(598021120))))[name = string("model_model_layers_27_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_27_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(598545472))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(623711360))))[name = string("model_model_layers_27_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_27_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(624235712))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(649401600))))[name = string("model_model_layers_27_mlp_down_proj_weight_palettized")]; + int32 var_51 = const()[name = string("op_51"), val = int32(-1)]; + int32 greater_equal_0_y_0 = const()[name = string("greater_equal_0_y_0"), val = int32(0)]; + tensor greater_equal_0 = greater_equal(x = current_pos, y = greater_equal_0_y_0)[name = string("greater_equal_0")]; + int32 slice_by_index_0 = const()[name = string("slice_by_index_0"), val = int32(131072)]; + tensor add_0 = add(x = current_pos, y = slice_by_index_0)[name = string("add_0")]; + tensor select_0 = select(a = current_pos, b = add_0, cond = greater_equal_0)[name = string("select_0")]; + int32 var_236_axis_0 = const()[name = string("op_236_axis_0"), val = int32(1)]; + int32 var_236_batch_dims_0 = const()[name = string("op_236_batch_dims_0"), val = int32(0)]; + bool var_236_validate_indices_0 = const()[name = string("op_236_validate_indices_0"), val = bool(false)]; + tensor var_56_to_fp16 = const()[name = string("op_56_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(649598272)))]; + tensor var_236_cast_fp16 = gather(axis = var_236_axis_0, batch_dims = var_236_batch_dims_0, indices = select_0, validate_indices = var_236_validate_indices_0, x = var_56_to_fp16)[name = string("op_236_cast_fp16")]; + tensor var_237 = const()[name = string("op_237"), val = tensor([1, 1, 1, -1])]; + tensor sin_1_cast_fp16 = reshape(shape = var_237, x = var_236_cast_fp16)[name = string("sin_1_cast_fp16")]; + int32 var_241_axis_0 = const()[name = string("op_241_axis_0"), val = int32(1)]; + int32 var_241_batch_dims_0 = const()[name = string("op_241_batch_dims_0"), val = int32(0)]; + bool var_241_validate_indices_0 = const()[name = string("op_241_validate_indices_0"), val = bool(false)]; + tensor var_50_to_fp16 = const()[name = string("op_50_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(683152768)))]; + tensor var_241_cast_fp16 = gather(axis = var_241_axis_0, batch_dims = var_241_batch_dims_0, indices = select_0, validate_indices = var_241_validate_indices_0, x = var_50_to_fp16)[name = string("op_241_cast_fp16")]; + tensor var_242 = const()[name = string("op_242"), val = tensor([1, 1, 1, -1])]; + tensor cos_1_cast_fp16 = reshape(shape = var_242, x = var_241_cast_fp16)[name = string("cos_1_cast_fp16")]; + tensor mean_1_axes_0 = const()[name = string("mean_1_axes_0"), val = tensor([-1])]; + bool mean_1_keep_dims_0 = const()[name = string("mean_1_keep_dims_0"), val = bool(true)]; + tensor mean_1_cast_fp16 = reduce_mean(axes = mean_1_axes_0, keep_dims = mean_1_keep_dims_0, x = hidden_states)[name = string("mean_1_cast_fp16")]; + tensor input_1_cast_fp16 = sub(x = hidden_states, y = mean_1_cast_fp16)[name = string("input_1_cast_fp16")]; + tensor var_250_axes_0 = const()[name = string("op_250_axes_0"), val = tensor([-1])]; + tensor model_model_layers_21_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_21_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(716707264)))]; + fp16 var_46_to_fp16 = const()[name = string("op_46_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_250_cast_fp16 = layer_norm(axes = var_250_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_21_input_layernorm_weight_to_fp16, x = input_1_cast_fp16)[name = string("op_250_cast_fp16")]; + tensor var_253 = const()[name = string("op_253"), val = tensor([0, 2, 1])]; + tensor var_255_axes_0 = const()[name = string("op_255_axes_0"), val = tensor([2])]; + tensor var_254 = transpose(perm = var_253, x = var_250_cast_fp16)[name = string("transpose_27")]; + tensor var_255 = expand_dims(axes = var_255_axes_0, x = var_254)[name = string("op_255")]; + string var_262_pad_type_0 = const()[name = string("op_262_pad_type_0"), val = string("valid")]; + tensor var_262_strides_0 = const()[name = string("op_262_strides_0"), val = tensor([1, 1])]; + tensor var_262_pad_0 = const()[name = string("op_262_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_262_dilations_0 = const()[name = string("op_262_dilations_0"), val = tensor([1, 1])]; + int32 var_262_groups_0 = const()[name = string("op_262_groups_0"), val = int32(1)]; + tensor var_262 = conv(dilations = var_262_dilations_0, groups = var_262_groups_0, pad = var_262_pad_0, pad_type = var_262_pad_type_0, strides = var_262_strides_0, weight = model_model_layers_21_self_attn_q_proj_weight_palettized, x = var_255)[name = string("op_262")]; + tensor var_263 = const()[name = string("op_263"), val = tensor([1, 24, 1, 128])]; + tensor var_264 = reshape(shape = var_263, x = var_262)[name = string("op_264")]; + string var_271_pad_type_0 = const()[name = string("op_271_pad_type_0"), val = string("valid")]; + tensor var_271_strides_0 = const()[name = string("op_271_strides_0"), val = tensor([1, 1])]; + tensor var_271_pad_0 = const()[name = string("op_271_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_271_dilations_0 = const()[name = string("op_271_dilations_0"), val = tensor([1, 1])]; + int32 var_271_groups_0 = const()[name = string("op_271_groups_0"), val = int32(1)]; + tensor var_271 = conv(dilations = var_271_dilations_0, groups = var_271_groups_0, pad = var_271_pad_0, pad_type = var_271_pad_type_0, strides = var_271_strides_0, weight = model_model_layers_21_self_attn_k_proj_weight_palettized, x = var_255)[name = string("op_271")]; + tensor var_272 = const()[name = string("op_272"), val = tensor([1, 8, 1, 128])]; + tensor var_273 = reshape(shape = var_272, x = var_271)[name = string("op_273")]; + string var_280_pad_type_0 = const()[name = string("op_280_pad_type_0"), val = string("valid")]; + tensor var_280_strides_0 = const()[name = string("op_280_strides_0"), val = tensor([1, 1])]; + tensor var_280_pad_0 = const()[name = string("op_280_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_280_dilations_0 = const()[name = string("op_280_dilations_0"), val = tensor([1, 1])]; + int32 var_280_groups_0 = const()[name = string("op_280_groups_0"), val = int32(1)]; + tensor var_280 = conv(dilations = var_280_dilations_0, groups = var_280_groups_0, pad = var_280_pad_0, pad_type = var_280_pad_type_0, strides = var_280_strides_0, weight = model_model_layers_21_self_attn_v_proj_weight_palettized, x = var_255)[name = string("op_280")]; + tensor var_281 = const()[name = string("op_281"), val = tensor([1, 8, 1, 128])]; + tensor var_282 = reshape(shape = var_281, x = var_280)[name = string("op_282")]; + tensor x1_1_begin_0 = const()[name = string("x1_1_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_1_end_0 = const()[name = string("x1_1_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_1_end_mask_0 = const()[name = string("x1_1_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_1 = slice_by_index(begin = x1_1_begin_0, end = x1_1_end_0, end_mask = x1_1_end_mask_0, x = var_264)[name = string("x1_1")]; + tensor x2_1_begin_0 = const()[name = string("x2_1_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_1_end_0 = const()[name = string("x2_1_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_1_end_mask_0 = const()[name = string("x2_1_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_1 = slice_by_index(begin = x2_1_begin_0, end = x2_1_end_0, end_mask = x2_1_end_mask_0, x = var_264)[name = string("x2_1")]; + tensor cos_3_begin_0 = const()[name = string("cos_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor cos_3_end_0 = const()[name = string("cos_3_end_0"), val = tensor([1, 1, 1, 64])]; + tensor cos_3_end_mask_0 = const()[name = string("cos_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor cos_3_cast_fp16 = slice_by_index(begin = cos_3_begin_0, end = cos_3_end_0, end_mask = cos_3_end_mask_0, x = cos_1_cast_fp16)[name = string("cos_3_cast_fp16")]; + tensor sin_3_begin_0 = const()[name = string("sin_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor sin_3_end_0 = const()[name = string("sin_3_end_0"), val = tensor([1, 1, 1, 64])]; + tensor sin_3_end_mask_0 = const()[name = string("sin_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor sin_3_cast_fp16 = slice_by_index(begin = sin_3_begin_0, end = sin_3_end_0, end_mask = sin_3_end_mask_0, x = sin_1_cast_fp16)[name = string("sin_3_cast_fp16")]; + tensor var_296_cast_fp16 = mul(x = x1_1, y = cos_3_cast_fp16)[name = string("op_296_cast_fp16")]; + tensor var_297_cast_fp16 = mul(x = x2_1, y = sin_3_cast_fp16)[name = string("op_297_cast_fp16")]; + tensor var_298_cast_fp16 = sub(x = var_296_cast_fp16, y = var_297_cast_fp16)[name = string("op_298_cast_fp16")]; + tensor var_299_cast_fp16 = mul(x = x2_1, y = cos_3_cast_fp16)[name = string("op_299_cast_fp16")]; + tensor var_300_cast_fp16 = mul(x = x1_1, y = sin_3_cast_fp16)[name = string("op_300_cast_fp16")]; + tensor var_301_cast_fp16 = add(x = var_299_cast_fp16, y = var_300_cast_fp16)[name = string("op_301_cast_fp16")]; + bool rotated_1_interleave_0 = const()[name = string("rotated_1_interleave_0"), val = bool(false)]; + tensor rotated_1_cast_fp16 = concat(axis = var_51, interleave = rotated_1_interleave_0, values = (var_298_cast_fp16, var_301_cast_fp16))[name = string("rotated_1_cast_fp16")]; + tensor x1_3_begin_0 = const()[name = string("x1_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_3_end_0 = const()[name = string("x1_3_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_3_end_mask_0 = const()[name = string("x1_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_3 = slice_by_index(begin = x1_3_begin_0, end = x1_3_end_0, end_mask = x1_3_end_mask_0, x = var_273)[name = string("x1_3")]; + tensor x2_3_begin_0 = const()[name = string("x2_3_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_3_end_0 = const()[name = string("x2_3_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_3_end_mask_0 = const()[name = string("x2_3_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_3 = slice_by_index(begin = x2_3_begin_0, end = x2_3_end_0, end_mask = x2_3_end_mask_0, x = var_273)[name = string("x2_3")]; + tensor var_317_cast_fp16 = mul(x = x1_3, y = cos_3_cast_fp16)[name = string("op_317_cast_fp16")]; + tensor var_318_cast_fp16 = mul(x = x2_3, y = sin_3_cast_fp16)[name = string("op_318_cast_fp16")]; + tensor var_319_cast_fp16 = sub(x = var_317_cast_fp16, y = var_318_cast_fp16)[name = string("op_319_cast_fp16")]; + tensor var_320_cast_fp16 = mul(x = x2_3, y = cos_3_cast_fp16)[name = string("op_320_cast_fp16")]; + tensor var_321_cast_fp16 = mul(x = x1_3, y = sin_3_cast_fp16)[name = string("op_321_cast_fp16")]; + tensor var_322_cast_fp16 = add(x = var_320_cast_fp16, y = var_321_cast_fp16)[name = string("op_322_cast_fp16")]; + bool rotated_3_interleave_0 = const()[name = string("rotated_3_interleave_0"), val = bool(false)]; + tensor rotated_3_cast_fp16 = concat(axis = var_51, interleave = rotated_3_interleave_0, values = (var_319_cast_fp16, var_322_cast_fp16))[name = string("rotated_3_cast_fp16")]; + int32 var_326 = const()[name = string("op_326"), val = int32(1)]; + tensor var_327 = add(x = current_pos, y = var_326)[name = string("op_327")]; + tensor read_state_0 = read_state(input = model_model_kv_cache_0)[name = string("read_state_0")]; + tensor expand_dims_0 = const()[name = string("expand_dims_0"), val = tensor([21])]; + tensor expand_dims_1 = const()[name = string("expand_dims_1"), val = tensor([0])]; + tensor expand_dims_3 = const()[name = string("expand_dims_3"), val = tensor([0])]; + tensor expand_dims_4 = const()[name = string("expand_dims_4"), val = tensor([22])]; + int32 concat_2_axis_0 = const()[name = string("concat_2_axis_0"), val = int32(0)]; + bool concat_2_interleave_0 = const()[name = string("concat_2_interleave_0"), val = bool(false)]; + tensor concat_2 = concat(axis = concat_2_axis_0, interleave = concat_2_interleave_0, values = (expand_dims_0, expand_dims_1, current_pos, expand_dims_3))[name = string("concat_2")]; + tensor concat_3_values1_0 = const()[name = string("concat_3_values1_0"), val = tensor([0])]; + tensor concat_3_values3_0 = const()[name = string("concat_3_values3_0"), val = tensor([0])]; + int32 concat_3_axis_0 = const()[name = string("concat_3_axis_0"), val = int32(0)]; + bool concat_3_interleave_0 = const()[name = string("concat_3_interleave_0"), val = bool(false)]; + tensor concat_3 = concat(axis = concat_3_axis_0, interleave = concat_3_interleave_0, values = (expand_dims_4, concat_3_values1_0, var_327, concat_3_values3_0))[name = string("concat_3")]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_2, begin_mask = model_model_kv_cache_0_internal_tensor_assign_1_begin_mask_0, end = concat_3, end_mask = model_model_kv_cache_0_internal_tensor_assign_1_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_1_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_1_stride_0, update = rotated_3_cast_fp16, x = read_state_0)[name = string("model_model_kv_cache_0_internal_tensor_assign_1_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_1_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_0_write_state")]; + tensor coreml_update_state_14 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_0")]; + tensor expand_dims_6 = const()[name = string("expand_dims_6"), val = tensor([49])]; + tensor expand_dims_7 = const()[name = string("expand_dims_7"), val = tensor([0])]; + tensor expand_dims_9 = const()[name = string("expand_dims_9"), val = tensor([0])]; + tensor expand_dims_10 = const()[name = string("expand_dims_10"), val = tensor([50])]; + int32 concat_6_axis_0 = const()[name = string("concat_6_axis_0"), val = int32(0)]; + bool concat_6_interleave_0 = const()[name = string("concat_6_interleave_0"), val = bool(false)]; + tensor concat_6 = concat(axis = concat_6_axis_0, interleave = concat_6_interleave_0, values = (expand_dims_6, expand_dims_7, current_pos, expand_dims_9))[name = string("concat_6")]; + tensor concat_7_values1_0 = const()[name = string("concat_7_values1_0"), val = tensor([0])]; + tensor concat_7_values3_0 = const()[name = string("concat_7_values3_0"), val = tensor([0])]; + int32 concat_7_axis_0 = const()[name = string("concat_7_axis_0"), val = int32(0)]; + bool concat_7_interleave_0 = const()[name = string("concat_7_interleave_0"), val = bool(false)]; + tensor concat_7 = concat(axis = concat_7_axis_0, interleave = concat_7_interleave_0, values = (expand_dims_10, concat_7_values1_0, var_327, concat_7_values3_0))[name = string("concat_7")]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_cast_fp16 = slice_update(begin = concat_6, begin_mask = model_model_kv_cache_0_internal_tensor_assign_2_begin_mask_0, end = concat_7, end_mask = model_model_kv_cache_0_internal_tensor_assign_2_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_2_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_2_stride_0, update = var_282, x = coreml_update_state_14)[name = string("model_model_kv_cache_0_internal_tensor_assign_2_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_2_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_1_write_state")]; + tensor coreml_update_state_15 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_1")]; + tensor var_342_begin_0 = const()[name = string("op_342_begin_0"), val = tensor([21, 0, 0, 0])]; + tensor var_342_end_0 = const()[name = string("op_342_end_0"), val = tensor([22, 8, 1024, 128])]; + tensor var_342_end_mask_0 = const()[name = string("op_342_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_342_cast_fp16 = slice_by_index(begin = var_342_begin_0, end = var_342_end_0, end_mask = var_342_end_mask_0, x = coreml_update_state_15)[name = string("op_342_cast_fp16")]; + tensor K_layer_cache_1_axes_0 = const()[name = string("K_layer_cache_1_axes_0"), val = tensor([0])]; + tensor K_layer_cache_1_cast_fp16 = squeeze(axes = K_layer_cache_1_axes_0, x = var_342_cast_fp16)[name = string("K_layer_cache_1_cast_fp16")]; + tensor var_344_begin_0 = const()[name = string("op_344_begin_0"), val = tensor([49, 0, 0, 0])]; + tensor var_344_end_0 = const()[name = string("op_344_end_0"), val = tensor([50, 8, 1024, 128])]; + tensor var_344_end_mask_0 = const()[name = string("op_344_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_344_cast_fp16 = slice_by_index(begin = var_344_begin_0, end = var_344_end_0, end_mask = var_344_end_mask_0, x = coreml_update_state_15)[name = string("op_344_cast_fp16")]; + tensor V_layer_cache_1_axes_0 = const()[name = string("V_layer_cache_1_axes_0"), val = tensor([0])]; + tensor V_layer_cache_1_cast_fp16 = squeeze(axes = V_layer_cache_1_axes_0, x = var_344_cast_fp16)[name = string("V_layer_cache_1_cast_fp16")]; + tensor x_11_axes_0 = const()[name = string("x_11_axes_0"), val = tensor([1])]; + tensor x_11_cast_fp16 = expand_dims(axes = x_11_axes_0, x = K_layer_cache_1_cast_fp16)[name = string("x_11_cast_fp16")]; + tensor var_353 = const()[name = string("op_353"), val = tensor([1, 3, 1, 1])]; + tensor x_13_cast_fp16 = tile(reps = var_353, x = x_11_cast_fp16)[name = string("x_13_cast_fp16")]; + tensor var_357 = const()[name = string("op_357"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_3_cast_fp16 = reshape(shape = var_357, x = x_13_cast_fp16)[name = string("key_states_3_cast_fp16")]; + tensor x_17_axes_0 = const()[name = string("x_17_axes_0"), val = tensor([1])]; + tensor x_17_cast_fp16 = expand_dims(axes = x_17_axes_0, x = V_layer_cache_1_cast_fp16)[name = string("x_17_cast_fp16")]; + tensor var_360 = const()[name = string("op_360"), val = tensor([1, 3, 1, 1])]; + tensor x_19_cast_fp16 = tile(reps = var_360, x = x_17_cast_fp16)[name = string("x_19_cast_fp16")]; + tensor var_364 = const()[name = string("op_364"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_3_cast_fp16 = reshape(shape = var_364, x = x_19_cast_fp16)[name = string("value_states_3_cast_fp16")]; + bool var_367_transpose_x_1 = const()[name = string("op_367_transpose_x_1"), val = bool(false)]; + bool var_367_transpose_y_1 = const()[name = string("op_367_transpose_y_1"), val = bool(true)]; + tensor var_367_cast_fp16 = matmul(transpose_x = var_367_transpose_x_1, transpose_y = var_367_transpose_y_1, x = rotated_1_cast_fp16, y = key_states_3_cast_fp16)[name = string("op_367_cast_fp16")]; + fp16 var_368_to_fp16 = const()[name = string("op_368_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_1_cast_fp16 = mul(x = var_367_cast_fp16, y = var_368_to_fp16)[name = string("attn_weights_1_cast_fp16")]; + tensor x_21_cast_fp16 = add(x = attn_weights_1_cast_fp16, y = causal_mask)[name = string("x_21_cast_fp16")]; + tensor reduce_max_0_axes_0 = const()[name = string("reduce_max_0_axes_0"), val = tensor([-1])]; + bool reduce_max_0_keep_dims_0 = const()[name = string("reduce_max_0_keep_dims_0"), val = bool(true)]; + tensor reduce_max_0_cast_fp16 = reduce_max(axes = reduce_max_0_axes_0, keep_dims = reduce_max_0_keep_dims_0, x = x_21_cast_fp16)[name = string("reduce_max_0_cast_fp16")]; + tensor x_23_cast_fp16 = sub(x = x_21_cast_fp16, y = reduce_max_0_cast_fp16)[name = string("x_23_cast_fp16")]; + tensor exp_x_1_cast_fp16 = exp(x = x_23_cast_fp16)[name = string("exp_x_1_cast_fp16")]; + tensor var_379_axes_0 = const()[name = string("op_379_axes_0"), val = tensor([-1])]; + bool var_379_keep_dims_0 = const()[name = string("op_379_keep_dims_0"), val = bool(true)]; + tensor var_379_cast_fp16 = reduce_sum(axes = var_379_axes_0, keep_dims = var_379_keep_dims_0, x = exp_x_1_cast_fp16)[name = string("op_379_cast_fp16")]; + tensor attn_weights_3_cast_fp16 = real_div(x = exp_x_1_cast_fp16, y = var_379_cast_fp16)[name = string("attn_weights_3_cast_fp16")]; + bool attn_output_1_transpose_x_0 = const()[name = string("attn_output_1_transpose_x_0"), val = bool(false)]; + bool attn_output_1_transpose_y_0 = const()[name = string("attn_output_1_transpose_y_0"), val = bool(false)]; + tensor attn_output_1_cast_fp16 = matmul(transpose_x = attn_output_1_transpose_x_0, transpose_y = attn_output_1_transpose_y_0, x = attn_weights_3_cast_fp16, y = value_states_3_cast_fp16)[name = string("attn_output_1_cast_fp16")]; + tensor var_382_perm_0 = const()[name = string("op_382_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_384 = const()[name = string("op_384"), val = tensor([1, 1, 3072])]; + tensor var_382_cast_fp16 = transpose(perm = var_382_perm_0, x = attn_output_1_cast_fp16)[name = string("transpose_26")]; + tensor input_5_cast_fp16 = reshape(shape = var_384, x = var_382_cast_fp16)[name = string("input_5_cast_fp16")]; + tensor model_model_layers_21_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(716713472))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726150720))))[name = string("model_model_layers_21_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_0_bias_0_to_fp16 = const()[name = string("linear_0_bias_0_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726347392)))]; + tensor linear_0_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_21_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_5_cast_fp16)[name = string("linear_0_cast_fp16")]; + tensor hidden_states_5_cast_fp16 = add(x = hidden_states, y = linear_0_cast_fp16)[name = string("hidden_states_5_cast_fp16")]; + tensor mean_3_axes_0 = const()[name = string("mean_3_axes_0"), val = tensor([-1])]; + bool mean_3_keep_dims_0 = const()[name = string("mean_3_keep_dims_0"), val = bool(true)]; + tensor mean_3_cast_fp16 = reduce_mean(axes = mean_3_axes_0, keep_dims = mean_3_keep_dims_0, x = hidden_states_5_cast_fp16)[name = string("mean_3_cast_fp16")]; + tensor input_7_cast_fp16 = sub(x = hidden_states_5_cast_fp16, y = mean_3_cast_fp16)[name = string("input_7_cast_fp16")]; + tensor var_395_axes_0 = const()[name = string("op_395_axes_0"), val = tensor([-1])]; + tensor model_model_layers_21_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_21_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726353600)))]; + tensor var_395_cast_fp16 = layer_norm(axes = var_395_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_21_post_attention_layernorm_weight_to_fp16, x = input_7_cast_fp16)[name = string("op_395_cast_fp16")]; + tensor var_402 = const()[name = string("op_402"), val = tensor([0, 2, 1])]; + tensor input_9_axes_0 = const()[name = string("input_9_axes_0"), val = tensor([2])]; + tensor var_403 = transpose(perm = var_402, x = var_395_cast_fp16)[name = string("transpose_25")]; + tensor input_9 = expand_dims(axes = input_9_axes_0, x = var_403)[name = string("input_9")]; + string input_11_pad_type_0 = const()[name = string("input_11_pad_type_0"), val = string("valid")]; + tensor input_11_strides_0 = const()[name = string("input_11_strides_0"), val = tensor([1, 1])]; + tensor input_11_pad_0 = const()[name = string("input_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_11_dilations_0 = const()[name = string("input_11_dilations_0"), val = tensor([1, 1])]; + int32 input_11_groups_0 = const()[name = string("input_11_groups_0"), val = int32(1)]; + tensor input_11 = conv(dilations = input_11_dilations_0, groups = input_11_groups_0, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = input_11_strides_0, weight = model_model_layers_21_mlp_gate_proj_weight_palettized, x = input_9)[name = string("input_11")]; + string up_states_1_pad_type_0 = const()[name = string("up_states_1_pad_type_0"), val = string("valid")]; + tensor up_states_1_strides_0 = const()[name = string("up_states_1_strides_0"), val = tensor([1, 1])]; + tensor up_states_1_pad_0 = const()[name = string("up_states_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_1_dilations_0 = const()[name = string("up_states_1_dilations_0"), val = tensor([1, 1])]; + int32 up_states_1_groups_0 = const()[name = string("up_states_1_groups_0"), val = int32(1)]; + tensor up_states_1 = conv(dilations = up_states_1_dilations_0, groups = up_states_1_groups_0, pad = up_states_1_pad_0, pad_type = up_states_1_pad_type_0, strides = up_states_1_strides_0, weight = model_model_layers_21_mlp_up_proj_weight_palettized, x = input_9)[name = string("up_states_1")]; + tensor gate_states_1 = silu(x = input_11)[name = string("gate_states_1")]; + tensor input_13 = mul(x = gate_states_1, y = up_states_1)[name = string("input_13")]; + string hidden_states_7_pad_type_0 = const()[name = string("hidden_states_7_pad_type_0"), val = string("valid")]; + tensor hidden_states_7_strides_0 = const()[name = string("hidden_states_7_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_7_pad_0 = const()[name = string("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_7_dilations_0 = const()[name = string("hidden_states_7_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_7_groups_0 = const()[name = string("hidden_states_7_groups_0"), val = int32(1)]; + tensor hidden_states_7 = conv(dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = model_model_layers_21_mlp_down_proj_weight_palettized, x = input_13)[name = string("hidden_states_7")]; + tensor var_425_axes_0 = const()[name = string("op_425_axes_0"), val = tensor([2])]; + tensor var_425 = squeeze(axes = var_425_axes_0, x = hidden_states_7)[name = string("op_425")]; + tensor var_426 = const()[name = string("op_426"), val = tensor([0, 2, 1])]; + tensor var_427 = transpose(perm = var_426, x = var_425)[name = string("transpose_24")]; + tensor hidden_states_9_cast_fp16 = add(x = hidden_states_5_cast_fp16, y = var_427)[name = string("hidden_states_9_cast_fp16")]; + tensor mean_5_axes_0 = const()[name = string("mean_5_axes_0"), val = tensor([-1])]; + bool mean_5_keep_dims_0 = const()[name = string("mean_5_keep_dims_0"), val = bool(true)]; + tensor mean_5_cast_fp16 = reduce_mean(axes = mean_5_axes_0, keep_dims = mean_5_keep_dims_0, x = hidden_states_9_cast_fp16)[name = string("mean_5_cast_fp16")]; + tensor input_15_cast_fp16 = sub(x = hidden_states_9_cast_fp16, y = mean_5_cast_fp16)[name = string("input_15_cast_fp16")]; + tensor var_435_axes_0 = const()[name = string("op_435_axes_0"), val = tensor([-1])]; + tensor model_model_layers_22_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_22_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726359808)))]; + tensor var_435_cast_fp16 = layer_norm(axes = var_435_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_22_input_layernorm_weight_to_fp16, x = input_15_cast_fp16)[name = string("op_435_cast_fp16")]; + tensor var_438 = const()[name = string("op_438"), val = tensor([0, 2, 1])]; + tensor var_440_axes_0 = const()[name = string("op_440_axes_0"), val = tensor([2])]; + tensor var_439 = transpose(perm = var_438, x = var_435_cast_fp16)[name = string("transpose_23")]; + tensor var_440 = expand_dims(axes = var_440_axes_0, x = var_439)[name = string("op_440")]; + string var_447_pad_type_0 = const()[name = string("op_447_pad_type_0"), val = string("valid")]; + tensor var_447_strides_0 = const()[name = string("op_447_strides_0"), val = tensor([1, 1])]; + tensor var_447_pad_0 = const()[name = string("op_447_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_447_dilations_0 = const()[name = string("op_447_dilations_0"), val = tensor([1, 1])]; + int32 var_447_groups_0 = const()[name = string("op_447_groups_0"), val = int32(1)]; + tensor var_447 = conv(dilations = var_447_dilations_0, groups = var_447_groups_0, pad = var_447_pad_0, pad_type = var_447_pad_type_0, strides = var_447_strides_0, weight = model_model_layers_22_self_attn_q_proj_weight_palettized, x = var_440)[name = string("op_447")]; + tensor var_448 = const()[name = string("op_448"), val = tensor([1, 24, 1, 128])]; + tensor var_449 = reshape(shape = var_448, x = var_447)[name = string("op_449")]; + string var_456_pad_type_0 = const()[name = string("op_456_pad_type_0"), val = string("valid")]; + tensor var_456_strides_0 = const()[name = string("op_456_strides_0"), val = tensor([1, 1])]; + tensor var_456_pad_0 = const()[name = string("op_456_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_456_dilations_0 = const()[name = string("op_456_dilations_0"), val = tensor([1, 1])]; + int32 var_456_groups_0 = const()[name = string("op_456_groups_0"), val = int32(1)]; + tensor var_456 = conv(dilations = var_456_dilations_0, groups = var_456_groups_0, pad = var_456_pad_0, pad_type = var_456_pad_type_0, strides = var_456_strides_0, weight = model_model_layers_22_self_attn_k_proj_weight_palettized, x = var_440)[name = string("op_456")]; + tensor var_457 = const()[name = string("op_457"), val = tensor([1, 8, 1, 128])]; + tensor var_458 = reshape(shape = var_457, x = var_456)[name = string("op_458")]; + string var_465_pad_type_0 = const()[name = string("op_465_pad_type_0"), val = string("valid")]; + tensor var_465_strides_0 = const()[name = string("op_465_strides_0"), val = tensor([1, 1])]; + tensor var_465_pad_0 = const()[name = string("op_465_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_465_dilations_0 = const()[name = string("op_465_dilations_0"), val = tensor([1, 1])]; + int32 var_465_groups_0 = const()[name = string("op_465_groups_0"), val = int32(1)]; + tensor var_465 = conv(dilations = var_465_dilations_0, groups = var_465_groups_0, pad = var_465_pad_0, pad_type = var_465_pad_type_0, strides = var_465_strides_0, weight = model_model_layers_22_self_attn_v_proj_weight_palettized, x = var_440)[name = string("op_465")]; + tensor var_466 = const()[name = string("op_466"), val = tensor([1, 8, 1, 128])]; + tensor var_467 = reshape(shape = var_466, x = var_465)[name = string("op_467")]; + tensor x1_5_begin_0 = const()[name = string("x1_5_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_5_end_0 = const()[name = string("x1_5_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_5_end_mask_0 = const()[name = string("x1_5_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_5 = slice_by_index(begin = x1_5_begin_0, end = x1_5_end_0, end_mask = x1_5_end_mask_0, x = var_449)[name = string("x1_5")]; + tensor x2_5_begin_0 = const()[name = string("x2_5_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_5_end_0 = const()[name = string("x2_5_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_5_end_mask_0 = const()[name = string("x2_5_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_5 = slice_by_index(begin = x2_5_begin_0, end = x2_5_end_0, end_mask = x2_5_end_mask_0, x = var_449)[name = string("x2_5")]; + tensor var_481_cast_fp16 = mul(x = x1_5, y = cos_3_cast_fp16)[name = string("op_481_cast_fp16")]; + tensor var_482_cast_fp16 = mul(x = x2_5, y = sin_3_cast_fp16)[name = string("op_482_cast_fp16")]; + tensor var_483_cast_fp16 = sub(x = var_481_cast_fp16, y = var_482_cast_fp16)[name = string("op_483_cast_fp16")]; + tensor var_484_cast_fp16 = mul(x = x2_5, y = cos_3_cast_fp16)[name = string("op_484_cast_fp16")]; + tensor var_485_cast_fp16 = mul(x = x1_5, y = sin_3_cast_fp16)[name = string("op_485_cast_fp16")]; + tensor var_486_cast_fp16 = add(x = var_484_cast_fp16, y = var_485_cast_fp16)[name = string("op_486_cast_fp16")]; + bool rotated_5_interleave_0 = const()[name = string("rotated_5_interleave_0"), val = bool(false)]; + tensor rotated_5_cast_fp16 = concat(axis = var_51, interleave = rotated_5_interleave_0, values = (var_483_cast_fp16, var_486_cast_fp16))[name = string("rotated_5_cast_fp16")]; + tensor x1_7_begin_0 = const()[name = string("x1_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_7_end_0 = const()[name = string("x1_7_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_7_end_mask_0 = const()[name = string("x1_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_7 = slice_by_index(begin = x1_7_begin_0, end = x1_7_end_0, end_mask = x1_7_end_mask_0, x = var_458)[name = string("x1_7")]; + tensor x2_7_begin_0 = const()[name = string("x2_7_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_7_end_0 = const()[name = string("x2_7_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_7_end_mask_0 = const()[name = string("x2_7_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_7 = slice_by_index(begin = x2_7_begin_0, end = x2_7_end_0, end_mask = x2_7_end_mask_0, x = var_458)[name = string("x2_7")]; + tensor var_502_cast_fp16 = mul(x = x1_7, y = cos_3_cast_fp16)[name = string("op_502_cast_fp16")]; + tensor var_503_cast_fp16 = mul(x = x2_7, y = sin_3_cast_fp16)[name = string("op_503_cast_fp16")]; + tensor var_504_cast_fp16 = sub(x = var_502_cast_fp16, y = var_503_cast_fp16)[name = string("op_504_cast_fp16")]; + tensor var_505_cast_fp16 = mul(x = x2_7, y = cos_3_cast_fp16)[name = string("op_505_cast_fp16")]; + tensor var_506_cast_fp16 = mul(x = x1_7, y = sin_3_cast_fp16)[name = string("op_506_cast_fp16")]; + tensor var_507_cast_fp16 = add(x = var_505_cast_fp16, y = var_506_cast_fp16)[name = string("op_507_cast_fp16")]; + bool rotated_7_interleave_0 = const()[name = string("rotated_7_interleave_0"), val = bool(false)]; + tensor rotated_7_cast_fp16 = concat(axis = var_51, interleave = rotated_7_interleave_0, values = (var_504_cast_fp16, var_507_cast_fp16))[name = string("rotated_7_cast_fp16")]; + tensor expand_dims_12 = const()[name = string("expand_dims_12"), val = tensor([22])]; + tensor expand_dims_13 = const()[name = string("expand_dims_13"), val = tensor([0])]; + tensor expand_dims_15 = const()[name = string("expand_dims_15"), val = tensor([0])]; + tensor expand_dims_16 = const()[name = string("expand_dims_16"), val = tensor([23])]; + int32 concat_10_axis_0 = const()[name = string("concat_10_axis_0"), val = int32(0)]; + bool concat_10_interleave_0 = const()[name = string("concat_10_interleave_0"), val = bool(false)]; + tensor concat_10 = concat(axis = concat_10_axis_0, interleave = concat_10_interleave_0, values = (expand_dims_12, expand_dims_13, current_pos, expand_dims_15))[name = string("concat_10")]; + tensor concat_11_values1_0 = const()[name = string("concat_11_values1_0"), val = tensor([0])]; + tensor concat_11_values3_0 = const()[name = string("concat_11_values3_0"), val = tensor([0])]; + int32 concat_11_axis_0 = const()[name = string("concat_11_axis_0"), val = int32(0)]; + bool concat_11_interleave_0 = const()[name = string("concat_11_interleave_0"), val = bool(false)]; + tensor concat_11 = concat(axis = concat_11_axis_0, interleave = concat_11_interleave_0, values = (expand_dims_16, concat_11_values1_0, var_327, concat_11_values3_0))[name = string("concat_11")]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_cast_fp16 = slice_update(begin = concat_10, begin_mask = model_model_kv_cache_0_internal_tensor_assign_3_begin_mask_0, end = concat_11, end_mask = model_model_kv_cache_0_internal_tensor_assign_3_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_3_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_3_stride_0, update = rotated_7_cast_fp16, x = coreml_update_state_15)[name = string("model_model_kv_cache_0_internal_tensor_assign_3_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_3_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_2_write_state")]; + tensor coreml_update_state_16 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_2")]; + tensor expand_dims_18 = const()[name = string("expand_dims_18"), val = tensor([50])]; + tensor expand_dims_19 = const()[name = string("expand_dims_19"), val = tensor([0])]; + tensor expand_dims_21 = const()[name = string("expand_dims_21"), val = tensor([0])]; + tensor expand_dims_22 = const()[name = string("expand_dims_22"), val = tensor([51])]; + int32 concat_14_axis_0 = const()[name = string("concat_14_axis_0"), val = int32(0)]; + bool concat_14_interleave_0 = const()[name = string("concat_14_interleave_0"), val = bool(false)]; + tensor concat_14 = concat(axis = concat_14_axis_0, interleave = concat_14_interleave_0, values = (expand_dims_18, expand_dims_19, current_pos, expand_dims_21))[name = string("concat_14")]; + tensor concat_15_values1_0 = const()[name = string("concat_15_values1_0"), val = tensor([0])]; + tensor concat_15_values3_0 = const()[name = string("concat_15_values3_0"), val = tensor([0])]; + int32 concat_15_axis_0 = const()[name = string("concat_15_axis_0"), val = int32(0)]; + bool concat_15_interleave_0 = const()[name = string("concat_15_interleave_0"), val = bool(false)]; + tensor concat_15 = concat(axis = concat_15_axis_0, interleave = concat_15_interleave_0, values = (expand_dims_22, concat_15_values1_0, var_327, concat_15_values3_0))[name = string("concat_15")]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_cast_fp16 = slice_update(begin = concat_14, begin_mask = model_model_kv_cache_0_internal_tensor_assign_4_begin_mask_0, end = concat_15, end_mask = model_model_kv_cache_0_internal_tensor_assign_4_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_4_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_4_stride_0, update = var_467, x = coreml_update_state_16)[name = string("model_model_kv_cache_0_internal_tensor_assign_4_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_4_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_3_write_state")]; + tensor coreml_update_state_17 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_3")]; + tensor var_527_begin_0 = const()[name = string("op_527_begin_0"), val = tensor([22, 0, 0, 0])]; + tensor var_527_end_0 = const()[name = string("op_527_end_0"), val = tensor([23, 8, 1024, 128])]; + tensor var_527_end_mask_0 = const()[name = string("op_527_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_527_cast_fp16 = slice_by_index(begin = var_527_begin_0, end = var_527_end_0, end_mask = var_527_end_mask_0, x = coreml_update_state_17)[name = string("op_527_cast_fp16")]; + tensor K_layer_cache_3_axes_0 = const()[name = string("K_layer_cache_3_axes_0"), val = tensor([0])]; + tensor K_layer_cache_3_cast_fp16 = squeeze(axes = K_layer_cache_3_axes_0, x = var_527_cast_fp16)[name = string("K_layer_cache_3_cast_fp16")]; + tensor var_529_begin_0 = const()[name = string("op_529_begin_0"), val = tensor([50, 0, 0, 0])]; + tensor var_529_end_0 = const()[name = string("op_529_end_0"), val = tensor([51, 8, 1024, 128])]; + tensor var_529_end_mask_0 = const()[name = string("op_529_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_529_cast_fp16 = slice_by_index(begin = var_529_begin_0, end = var_529_end_0, end_mask = var_529_end_mask_0, x = coreml_update_state_17)[name = string("op_529_cast_fp16")]; + tensor V_layer_cache_3_axes_0 = const()[name = string("V_layer_cache_3_axes_0"), val = tensor([0])]; + tensor V_layer_cache_3_cast_fp16 = squeeze(axes = V_layer_cache_3_axes_0, x = var_529_cast_fp16)[name = string("V_layer_cache_3_cast_fp16")]; + tensor x_39_axes_0 = const()[name = string("x_39_axes_0"), val = tensor([1])]; + tensor x_39_cast_fp16 = expand_dims(axes = x_39_axes_0, x = K_layer_cache_3_cast_fp16)[name = string("x_39_cast_fp16")]; + tensor var_538 = const()[name = string("op_538"), val = tensor([1, 3, 1, 1])]; + tensor x_41_cast_fp16 = tile(reps = var_538, x = x_39_cast_fp16)[name = string("x_41_cast_fp16")]; + tensor var_542 = const()[name = string("op_542"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_7_cast_fp16 = reshape(shape = var_542, x = x_41_cast_fp16)[name = string("key_states_7_cast_fp16")]; + tensor x_45_axes_0 = const()[name = string("x_45_axes_0"), val = tensor([1])]; + tensor x_45_cast_fp16 = expand_dims(axes = x_45_axes_0, x = V_layer_cache_3_cast_fp16)[name = string("x_45_cast_fp16")]; + tensor var_545 = const()[name = string("op_545"), val = tensor([1, 3, 1, 1])]; + tensor x_47_cast_fp16 = tile(reps = var_545, x = x_45_cast_fp16)[name = string("x_47_cast_fp16")]; + tensor var_549 = const()[name = string("op_549"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_7_cast_fp16 = reshape(shape = var_549, x = x_47_cast_fp16)[name = string("value_states_7_cast_fp16")]; + bool var_552_transpose_x_1 = const()[name = string("op_552_transpose_x_1"), val = bool(false)]; + bool var_552_transpose_y_1 = const()[name = string("op_552_transpose_y_1"), val = bool(true)]; + tensor var_552_cast_fp16 = matmul(transpose_x = var_552_transpose_x_1, transpose_y = var_552_transpose_y_1, x = rotated_5_cast_fp16, y = key_states_7_cast_fp16)[name = string("op_552_cast_fp16")]; + fp16 var_553_to_fp16 = const()[name = string("op_553_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_5_cast_fp16 = mul(x = var_552_cast_fp16, y = var_553_to_fp16)[name = string("attn_weights_5_cast_fp16")]; + tensor x_49_cast_fp16 = add(x = attn_weights_5_cast_fp16, y = causal_mask)[name = string("x_49_cast_fp16")]; + tensor reduce_max_1_axes_0 = const()[name = string("reduce_max_1_axes_0"), val = tensor([-1])]; + bool reduce_max_1_keep_dims_0 = const()[name = string("reduce_max_1_keep_dims_0"), val = bool(true)]; + tensor reduce_max_1_cast_fp16 = reduce_max(axes = reduce_max_1_axes_0, keep_dims = reduce_max_1_keep_dims_0, x = x_49_cast_fp16)[name = string("reduce_max_1_cast_fp16")]; + tensor x_51_cast_fp16 = sub(x = x_49_cast_fp16, y = reduce_max_1_cast_fp16)[name = string("x_51_cast_fp16")]; + tensor exp_x_3_cast_fp16 = exp(x = x_51_cast_fp16)[name = string("exp_x_3_cast_fp16")]; + tensor var_564_axes_0 = const()[name = string("op_564_axes_0"), val = tensor([-1])]; + bool var_564_keep_dims_0 = const()[name = string("op_564_keep_dims_0"), val = bool(true)]; + tensor var_564_cast_fp16 = reduce_sum(axes = var_564_axes_0, keep_dims = var_564_keep_dims_0, x = exp_x_3_cast_fp16)[name = string("op_564_cast_fp16")]; + tensor attn_weights_7_cast_fp16 = real_div(x = exp_x_3_cast_fp16, y = var_564_cast_fp16)[name = string("attn_weights_7_cast_fp16")]; + bool attn_output_7_transpose_x_0 = const()[name = string("attn_output_7_transpose_x_0"), val = bool(false)]; + bool attn_output_7_transpose_y_0 = const()[name = string("attn_output_7_transpose_y_0"), val = bool(false)]; + tensor attn_output_7_cast_fp16 = matmul(transpose_x = attn_output_7_transpose_x_0, transpose_y = attn_output_7_transpose_y_0, x = attn_weights_7_cast_fp16, y = value_states_7_cast_fp16)[name = string("attn_output_7_cast_fp16")]; + tensor var_567_perm_0 = const()[name = string("op_567_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_569 = const()[name = string("op_569"), val = tensor([1, 1, 3072])]; + tensor var_567_cast_fp16 = transpose(perm = var_567_perm_0, x = attn_output_7_cast_fp16)[name = string("transpose_22")]; + tensor input_19_cast_fp16 = reshape(shape = var_569, x = var_567_cast_fp16)[name = string("input_19_cast_fp16")]; + tensor model_model_layers_22_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726366016))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(735803264))))[name = string("model_model_layers_22_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_1_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_22_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_19_cast_fp16)[name = string("linear_1_cast_fp16")]; + tensor hidden_states_13_cast_fp16 = add(x = hidden_states_9_cast_fp16, y = linear_1_cast_fp16)[name = string("hidden_states_13_cast_fp16")]; + tensor mean_7_axes_0 = const()[name = string("mean_7_axes_0"), val = tensor([-1])]; + bool mean_7_keep_dims_0 = const()[name = string("mean_7_keep_dims_0"), val = bool(true)]; + tensor mean_7_cast_fp16 = reduce_mean(axes = mean_7_axes_0, keep_dims = mean_7_keep_dims_0, x = hidden_states_13_cast_fp16)[name = string("mean_7_cast_fp16")]; + tensor input_21_cast_fp16 = sub(x = hidden_states_13_cast_fp16, y = mean_7_cast_fp16)[name = string("input_21_cast_fp16")]; + tensor var_580_axes_0 = const()[name = string("op_580_axes_0"), val = tensor([-1])]; + tensor model_model_layers_22_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_22_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(735999936)))]; + tensor var_580_cast_fp16 = layer_norm(axes = var_580_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_22_post_attention_layernorm_weight_to_fp16, x = input_21_cast_fp16)[name = string("op_580_cast_fp16")]; + tensor var_587 = const()[name = string("op_587"), val = tensor([0, 2, 1])]; + tensor input_23_axes_0 = const()[name = string("input_23_axes_0"), val = tensor([2])]; + tensor var_588 = transpose(perm = var_587, x = var_580_cast_fp16)[name = string("transpose_21")]; + tensor input_23 = expand_dims(axes = input_23_axes_0, x = var_588)[name = string("input_23")]; + string input_25_pad_type_0 = const()[name = string("input_25_pad_type_0"), val = string("valid")]; + tensor input_25_strides_0 = const()[name = string("input_25_strides_0"), val = tensor([1, 1])]; + tensor input_25_pad_0 = const()[name = string("input_25_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_25_dilations_0 = const()[name = string("input_25_dilations_0"), val = tensor([1, 1])]; + int32 input_25_groups_0 = const()[name = string("input_25_groups_0"), val = int32(1)]; + tensor input_25 = conv(dilations = input_25_dilations_0, groups = input_25_groups_0, pad = input_25_pad_0, pad_type = input_25_pad_type_0, strides = input_25_strides_0, weight = model_model_layers_22_mlp_gate_proj_weight_palettized, x = input_23)[name = string("input_25")]; + string up_states_3_pad_type_0 = const()[name = string("up_states_3_pad_type_0"), val = string("valid")]; + tensor up_states_3_strides_0 = const()[name = string("up_states_3_strides_0"), val = tensor([1, 1])]; + tensor up_states_3_pad_0 = const()[name = string("up_states_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_3_dilations_0 = const()[name = string("up_states_3_dilations_0"), val = tensor([1, 1])]; + int32 up_states_3_groups_0 = const()[name = string("up_states_3_groups_0"), val = int32(1)]; + tensor up_states_3 = conv(dilations = up_states_3_dilations_0, groups = up_states_3_groups_0, pad = up_states_3_pad_0, pad_type = up_states_3_pad_type_0, strides = up_states_3_strides_0, weight = model_model_layers_22_mlp_up_proj_weight_palettized, x = input_23)[name = string("up_states_3")]; + tensor gate_states_3 = silu(x = input_25)[name = string("gate_states_3")]; + tensor input_27 = mul(x = gate_states_3, y = up_states_3)[name = string("input_27")]; + string hidden_states_15_pad_type_0 = const()[name = string("hidden_states_15_pad_type_0"), val = string("valid")]; + tensor hidden_states_15_strides_0 = const()[name = string("hidden_states_15_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_15_pad_0 = const()[name = string("hidden_states_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_15_dilations_0 = const()[name = string("hidden_states_15_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_15_groups_0 = const()[name = string("hidden_states_15_groups_0"), val = int32(1)]; + tensor hidden_states_15 = conv(dilations = hidden_states_15_dilations_0, groups = hidden_states_15_groups_0, pad = hidden_states_15_pad_0, pad_type = hidden_states_15_pad_type_0, strides = hidden_states_15_strides_0, weight = model_model_layers_22_mlp_down_proj_weight_palettized, x = input_27)[name = string("hidden_states_15")]; + tensor var_610_axes_0 = const()[name = string("op_610_axes_0"), val = tensor([2])]; + tensor var_610 = squeeze(axes = var_610_axes_0, x = hidden_states_15)[name = string("op_610")]; + tensor var_611 = const()[name = string("op_611"), val = tensor([0, 2, 1])]; + tensor var_612 = transpose(perm = var_611, x = var_610)[name = string("transpose_20")]; + tensor hidden_states_17_cast_fp16 = add(x = hidden_states_13_cast_fp16, y = var_612)[name = string("hidden_states_17_cast_fp16")]; + tensor mean_9_axes_0 = const()[name = string("mean_9_axes_0"), val = tensor([-1])]; + bool mean_9_keep_dims_0 = const()[name = string("mean_9_keep_dims_0"), val = bool(true)]; + tensor mean_9_cast_fp16 = reduce_mean(axes = mean_9_axes_0, keep_dims = mean_9_keep_dims_0, x = hidden_states_17_cast_fp16)[name = string("mean_9_cast_fp16")]; + tensor input_29_cast_fp16 = sub(x = hidden_states_17_cast_fp16, y = mean_9_cast_fp16)[name = string("input_29_cast_fp16")]; + tensor var_620_axes_0 = const()[name = string("op_620_axes_0"), val = tensor([-1])]; + tensor model_model_layers_23_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_23_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(736006144)))]; + tensor var_620_cast_fp16 = layer_norm(axes = var_620_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_23_input_layernorm_weight_to_fp16, x = input_29_cast_fp16)[name = string("op_620_cast_fp16")]; + tensor var_623 = const()[name = string("op_623"), val = tensor([0, 2, 1])]; + tensor var_625_axes_0 = const()[name = string("op_625_axes_0"), val = tensor([2])]; + tensor var_624 = transpose(perm = var_623, x = var_620_cast_fp16)[name = string("transpose_19")]; + tensor var_625 = expand_dims(axes = var_625_axes_0, x = var_624)[name = string("op_625")]; + string var_632_pad_type_0 = const()[name = string("op_632_pad_type_0"), val = string("valid")]; + tensor var_632_strides_0 = const()[name = string("op_632_strides_0"), val = tensor([1, 1])]; + tensor var_632_pad_0 = const()[name = string("op_632_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_632_dilations_0 = const()[name = string("op_632_dilations_0"), val = tensor([1, 1])]; + int32 var_632_groups_0 = const()[name = string("op_632_groups_0"), val = int32(1)]; + tensor var_632 = conv(dilations = var_632_dilations_0, groups = var_632_groups_0, pad = var_632_pad_0, pad_type = var_632_pad_type_0, strides = var_632_strides_0, weight = model_model_layers_23_self_attn_q_proj_weight_palettized, x = var_625)[name = string("op_632")]; + tensor var_633 = const()[name = string("op_633"), val = tensor([1, 24, 1, 128])]; + tensor var_634 = reshape(shape = var_633, x = var_632)[name = string("op_634")]; + string var_641_pad_type_0 = const()[name = string("op_641_pad_type_0"), val = string("valid")]; + tensor var_641_strides_0 = const()[name = string("op_641_strides_0"), val = tensor([1, 1])]; + tensor var_641_pad_0 = const()[name = string("op_641_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_641_dilations_0 = const()[name = string("op_641_dilations_0"), val = tensor([1, 1])]; + int32 var_641_groups_0 = const()[name = string("op_641_groups_0"), val = int32(1)]; + tensor var_641 = conv(dilations = var_641_dilations_0, groups = var_641_groups_0, pad = var_641_pad_0, pad_type = var_641_pad_type_0, strides = var_641_strides_0, weight = model_model_layers_23_self_attn_k_proj_weight_palettized, x = var_625)[name = string("op_641")]; + tensor var_642 = const()[name = string("op_642"), val = tensor([1, 8, 1, 128])]; + tensor var_643 = reshape(shape = var_642, x = var_641)[name = string("op_643")]; + string var_650_pad_type_0 = const()[name = string("op_650_pad_type_0"), val = string("valid")]; + tensor var_650_strides_0 = const()[name = string("op_650_strides_0"), val = tensor([1, 1])]; + tensor var_650_pad_0 = const()[name = string("op_650_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_650_dilations_0 = const()[name = string("op_650_dilations_0"), val = tensor([1, 1])]; + int32 var_650_groups_0 = const()[name = string("op_650_groups_0"), val = int32(1)]; + tensor var_650 = conv(dilations = var_650_dilations_0, groups = var_650_groups_0, pad = var_650_pad_0, pad_type = var_650_pad_type_0, strides = var_650_strides_0, weight = model_model_layers_23_self_attn_v_proj_weight_palettized, x = var_625)[name = string("op_650")]; + tensor var_651 = const()[name = string("op_651"), val = tensor([1, 8, 1, 128])]; + tensor var_652 = reshape(shape = var_651, x = var_650)[name = string("op_652")]; + tensor x1_9_begin_0 = const()[name = string("x1_9_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_9_end_0 = const()[name = string("x1_9_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_9_end_mask_0 = const()[name = string("x1_9_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_9 = slice_by_index(begin = x1_9_begin_0, end = x1_9_end_0, end_mask = x1_9_end_mask_0, x = var_634)[name = string("x1_9")]; + tensor x2_9_begin_0 = const()[name = string("x2_9_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_9_end_0 = const()[name = string("x2_9_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_9_end_mask_0 = const()[name = string("x2_9_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_9 = slice_by_index(begin = x2_9_begin_0, end = x2_9_end_0, end_mask = x2_9_end_mask_0, x = var_634)[name = string("x2_9")]; + tensor var_666_cast_fp16 = mul(x = x1_9, y = cos_3_cast_fp16)[name = string("op_666_cast_fp16")]; + tensor var_667_cast_fp16 = mul(x = x2_9, y = sin_3_cast_fp16)[name = string("op_667_cast_fp16")]; + tensor var_668_cast_fp16 = sub(x = var_666_cast_fp16, y = var_667_cast_fp16)[name = string("op_668_cast_fp16")]; + tensor var_669_cast_fp16 = mul(x = x2_9, y = cos_3_cast_fp16)[name = string("op_669_cast_fp16")]; + tensor var_670_cast_fp16 = mul(x = x1_9, y = sin_3_cast_fp16)[name = string("op_670_cast_fp16")]; + tensor var_671_cast_fp16 = add(x = var_669_cast_fp16, y = var_670_cast_fp16)[name = string("op_671_cast_fp16")]; + bool rotated_9_interleave_0 = const()[name = string("rotated_9_interleave_0"), val = bool(false)]; + tensor rotated_9_cast_fp16 = concat(axis = var_51, interleave = rotated_9_interleave_0, values = (var_668_cast_fp16, var_671_cast_fp16))[name = string("rotated_9_cast_fp16")]; + tensor x1_11_begin_0 = const()[name = string("x1_11_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_11_end_0 = const()[name = string("x1_11_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_11_end_mask_0 = const()[name = string("x1_11_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_11 = slice_by_index(begin = x1_11_begin_0, end = x1_11_end_0, end_mask = x1_11_end_mask_0, x = var_643)[name = string("x1_11")]; + tensor x2_11_begin_0 = const()[name = string("x2_11_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_11_end_0 = const()[name = string("x2_11_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_11_end_mask_0 = const()[name = string("x2_11_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_11 = slice_by_index(begin = x2_11_begin_0, end = x2_11_end_0, end_mask = x2_11_end_mask_0, x = var_643)[name = string("x2_11")]; + tensor var_687_cast_fp16 = mul(x = x1_11, y = cos_3_cast_fp16)[name = string("op_687_cast_fp16")]; + tensor var_688_cast_fp16 = mul(x = x2_11, y = sin_3_cast_fp16)[name = string("op_688_cast_fp16")]; + tensor var_689_cast_fp16 = sub(x = var_687_cast_fp16, y = var_688_cast_fp16)[name = string("op_689_cast_fp16")]; + tensor var_690_cast_fp16 = mul(x = x2_11, y = cos_3_cast_fp16)[name = string("op_690_cast_fp16")]; + tensor var_691_cast_fp16 = mul(x = x1_11, y = sin_3_cast_fp16)[name = string("op_691_cast_fp16")]; + tensor var_692_cast_fp16 = add(x = var_690_cast_fp16, y = var_691_cast_fp16)[name = string("op_692_cast_fp16")]; + bool rotated_11_interleave_0 = const()[name = string("rotated_11_interleave_0"), val = bool(false)]; + tensor rotated_11_cast_fp16 = concat(axis = var_51, interleave = rotated_11_interleave_0, values = (var_689_cast_fp16, var_692_cast_fp16))[name = string("rotated_11_cast_fp16")]; + tensor expand_dims_24 = const()[name = string("expand_dims_24"), val = tensor([23])]; + tensor expand_dims_25 = const()[name = string("expand_dims_25"), val = tensor([0])]; + tensor expand_dims_27 = const()[name = string("expand_dims_27"), val = tensor([0])]; + tensor expand_dims_28 = const()[name = string("expand_dims_28"), val = tensor([24])]; + int32 concat_18_axis_0 = const()[name = string("concat_18_axis_0"), val = int32(0)]; + bool concat_18_interleave_0 = const()[name = string("concat_18_interleave_0"), val = bool(false)]; + tensor concat_18 = concat(axis = concat_18_axis_0, interleave = concat_18_interleave_0, values = (expand_dims_24, expand_dims_25, current_pos, expand_dims_27))[name = string("concat_18")]; + tensor concat_19_values1_0 = const()[name = string("concat_19_values1_0"), val = tensor([0])]; + tensor concat_19_values3_0 = const()[name = string("concat_19_values3_0"), val = tensor([0])]; + int32 concat_19_axis_0 = const()[name = string("concat_19_axis_0"), val = int32(0)]; + bool concat_19_interleave_0 = const()[name = string("concat_19_interleave_0"), val = bool(false)]; + tensor concat_19 = concat(axis = concat_19_axis_0, interleave = concat_19_interleave_0, values = (expand_dims_28, concat_19_values1_0, var_327, concat_19_values3_0))[name = string("concat_19")]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_cast_fp16 = slice_update(begin = concat_18, begin_mask = model_model_kv_cache_0_internal_tensor_assign_5_begin_mask_0, end = concat_19, end_mask = model_model_kv_cache_0_internal_tensor_assign_5_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_5_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_5_stride_0, update = rotated_11_cast_fp16, x = coreml_update_state_17)[name = string("model_model_kv_cache_0_internal_tensor_assign_5_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_5_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_4_write_state")]; + tensor coreml_update_state_18 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_4")]; + tensor expand_dims_30 = const()[name = string("expand_dims_30"), val = tensor([51])]; + tensor expand_dims_31 = const()[name = string("expand_dims_31"), val = tensor([0])]; + tensor expand_dims_33 = const()[name = string("expand_dims_33"), val = tensor([0])]; + tensor expand_dims_34 = const()[name = string("expand_dims_34"), val = tensor([52])]; + int32 concat_22_axis_0 = const()[name = string("concat_22_axis_0"), val = int32(0)]; + bool concat_22_interleave_0 = const()[name = string("concat_22_interleave_0"), val = bool(false)]; + tensor concat_22 = concat(axis = concat_22_axis_0, interleave = concat_22_interleave_0, values = (expand_dims_30, expand_dims_31, current_pos, expand_dims_33))[name = string("concat_22")]; + tensor concat_23_values1_0 = const()[name = string("concat_23_values1_0"), val = tensor([0])]; + tensor concat_23_values3_0 = const()[name = string("concat_23_values3_0"), val = tensor([0])]; + int32 concat_23_axis_0 = const()[name = string("concat_23_axis_0"), val = int32(0)]; + bool concat_23_interleave_0 = const()[name = string("concat_23_interleave_0"), val = bool(false)]; + tensor concat_23 = concat(axis = concat_23_axis_0, interleave = concat_23_interleave_0, values = (expand_dims_34, concat_23_values1_0, var_327, concat_23_values3_0))[name = string("concat_23")]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_cast_fp16 = slice_update(begin = concat_22, begin_mask = model_model_kv_cache_0_internal_tensor_assign_6_begin_mask_0, end = concat_23, end_mask = model_model_kv_cache_0_internal_tensor_assign_6_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_6_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_6_stride_0, update = var_652, x = coreml_update_state_18)[name = string("model_model_kv_cache_0_internal_tensor_assign_6_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_6_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_5_write_state")]; + tensor coreml_update_state_19 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_5")]; + tensor var_712_begin_0 = const()[name = string("op_712_begin_0"), val = tensor([23, 0, 0, 0])]; + tensor var_712_end_0 = const()[name = string("op_712_end_0"), val = tensor([24, 8, 1024, 128])]; + tensor var_712_end_mask_0 = const()[name = string("op_712_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_712_cast_fp16 = slice_by_index(begin = var_712_begin_0, end = var_712_end_0, end_mask = var_712_end_mask_0, x = coreml_update_state_19)[name = string("op_712_cast_fp16")]; + tensor K_layer_cache_5_axes_0 = const()[name = string("K_layer_cache_5_axes_0"), val = tensor([0])]; + tensor K_layer_cache_5_cast_fp16 = squeeze(axes = K_layer_cache_5_axes_0, x = var_712_cast_fp16)[name = string("K_layer_cache_5_cast_fp16")]; + tensor var_714_begin_0 = const()[name = string("op_714_begin_0"), val = tensor([51, 0, 0, 0])]; + tensor var_714_end_0 = const()[name = string("op_714_end_0"), val = tensor([52, 8, 1024, 128])]; + tensor var_714_end_mask_0 = const()[name = string("op_714_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_714_cast_fp16 = slice_by_index(begin = var_714_begin_0, end = var_714_end_0, end_mask = var_714_end_mask_0, x = coreml_update_state_19)[name = string("op_714_cast_fp16")]; + tensor V_layer_cache_5_axes_0 = const()[name = string("V_layer_cache_5_axes_0"), val = tensor([0])]; + tensor V_layer_cache_5_cast_fp16 = squeeze(axes = V_layer_cache_5_axes_0, x = var_714_cast_fp16)[name = string("V_layer_cache_5_cast_fp16")]; + tensor x_67_axes_0 = const()[name = string("x_67_axes_0"), val = tensor([1])]; + tensor x_67_cast_fp16 = expand_dims(axes = x_67_axes_0, x = K_layer_cache_5_cast_fp16)[name = string("x_67_cast_fp16")]; + tensor var_723 = const()[name = string("op_723"), val = tensor([1, 3, 1, 1])]; + tensor x_69_cast_fp16 = tile(reps = var_723, x = x_67_cast_fp16)[name = string("x_69_cast_fp16")]; + tensor var_727 = const()[name = string("op_727"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_11_cast_fp16 = reshape(shape = var_727, x = x_69_cast_fp16)[name = string("key_states_11_cast_fp16")]; + tensor x_73_axes_0 = const()[name = string("x_73_axes_0"), val = tensor([1])]; + tensor x_73_cast_fp16 = expand_dims(axes = x_73_axes_0, x = V_layer_cache_5_cast_fp16)[name = string("x_73_cast_fp16")]; + tensor var_730 = const()[name = string("op_730"), val = tensor([1, 3, 1, 1])]; + tensor x_75_cast_fp16 = tile(reps = var_730, x = x_73_cast_fp16)[name = string("x_75_cast_fp16")]; + tensor var_734 = const()[name = string("op_734"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_11_cast_fp16 = reshape(shape = var_734, x = x_75_cast_fp16)[name = string("value_states_11_cast_fp16")]; + bool var_737_transpose_x_1 = const()[name = string("op_737_transpose_x_1"), val = bool(false)]; + bool var_737_transpose_y_1 = const()[name = string("op_737_transpose_y_1"), val = bool(true)]; + tensor var_737_cast_fp16 = matmul(transpose_x = var_737_transpose_x_1, transpose_y = var_737_transpose_y_1, x = rotated_9_cast_fp16, y = key_states_11_cast_fp16)[name = string("op_737_cast_fp16")]; + fp16 var_738_to_fp16 = const()[name = string("op_738_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_9_cast_fp16 = mul(x = var_737_cast_fp16, y = var_738_to_fp16)[name = string("attn_weights_9_cast_fp16")]; + tensor x_77_cast_fp16 = add(x = attn_weights_9_cast_fp16, y = causal_mask)[name = string("x_77_cast_fp16")]; + tensor reduce_max_2_axes_0 = const()[name = string("reduce_max_2_axes_0"), val = tensor([-1])]; + bool reduce_max_2_keep_dims_0 = const()[name = string("reduce_max_2_keep_dims_0"), val = bool(true)]; + tensor reduce_max_2_cast_fp16 = reduce_max(axes = reduce_max_2_axes_0, keep_dims = reduce_max_2_keep_dims_0, x = x_77_cast_fp16)[name = string("reduce_max_2_cast_fp16")]; + tensor x_79_cast_fp16 = sub(x = x_77_cast_fp16, y = reduce_max_2_cast_fp16)[name = string("x_79_cast_fp16")]; + tensor exp_x_5_cast_fp16 = exp(x = x_79_cast_fp16)[name = string("exp_x_5_cast_fp16")]; + tensor var_749_axes_0 = const()[name = string("op_749_axes_0"), val = tensor([-1])]; + bool var_749_keep_dims_0 = const()[name = string("op_749_keep_dims_0"), val = bool(true)]; + tensor var_749_cast_fp16 = reduce_sum(axes = var_749_axes_0, keep_dims = var_749_keep_dims_0, x = exp_x_5_cast_fp16)[name = string("op_749_cast_fp16")]; + tensor attn_weights_11_cast_fp16 = real_div(x = exp_x_5_cast_fp16, y = var_749_cast_fp16)[name = string("attn_weights_11_cast_fp16")]; + bool attn_output_13_transpose_x_0 = const()[name = string("attn_output_13_transpose_x_0"), val = bool(false)]; + bool attn_output_13_transpose_y_0 = const()[name = string("attn_output_13_transpose_y_0"), val = bool(false)]; + tensor attn_output_13_cast_fp16 = matmul(transpose_x = attn_output_13_transpose_x_0, transpose_y = attn_output_13_transpose_y_0, x = attn_weights_11_cast_fp16, y = value_states_11_cast_fp16)[name = string("attn_output_13_cast_fp16")]; + tensor var_752_perm_0 = const()[name = string("op_752_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_754 = const()[name = string("op_754"), val = tensor([1, 1, 3072])]; + tensor var_752_cast_fp16 = transpose(perm = var_752_perm_0, x = attn_output_13_cast_fp16)[name = string("transpose_18")]; + tensor input_33_cast_fp16 = reshape(shape = var_754, x = var_752_cast_fp16)[name = string("input_33_cast_fp16")]; + tensor model_model_layers_23_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(736012352))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745449600))))[name = string("model_model_layers_23_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_2_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_23_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_33_cast_fp16)[name = string("linear_2_cast_fp16")]; + tensor hidden_states_21_cast_fp16 = add(x = hidden_states_17_cast_fp16, y = linear_2_cast_fp16)[name = string("hidden_states_21_cast_fp16")]; + tensor mean_11_axes_0 = const()[name = string("mean_11_axes_0"), val = tensor([-1])]; + bool mean_11_keep_dims_0 = const()[name = string("mean_11_keep_dims_0"), val = bool(true)]; + tensor mean_11_cast_fp16 = reduce_mean(axes = mean_11_axes_0, keep_dims = mean_11_keep_dims_0, x = hidden_states_21_cast_fp16)[name = string("mean_11_cast_fp16")]; + tensor input_35_cast_fp16 = sub(x = hidden_states_21_cast_fp16, y = mean_11_cast_fp16)[name = string("input_35_cast_fp16")]; + tensor var_765_axes_0 = const()[name = string("op_765_axes_0"), val = tensor([-1])]; + tensor model_model_layers_23_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_23_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745646272)))]; + tensor var_765_cast_fp16 = layer_norm(axes = var_765_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_23_post_attention_layernorm_weight_to_fp16, x = input_35_cast_fp16)[name = string("op_765_cast_fp16")]; + tensor var_772 = const()[name = string("op_772"), val = tensor([0, 2, 1])]; + tensor input_37_axes_0 = const()[name = string("input_37_axes_0"), val = tensor([2])]; + tensor var_773 = transpose(perm = var_772, x = var_765_cast_fp16)[name = string("transpose_17")]; + tensor input_37 = expand_dims(axes = input_37_axes_0, x = var_773)[name = string("input_37")]; + string input_39_pad_type_0 = const()[name = string("input_39_pad_type_0"), val = string("valid")]; + tensor input_39_strides_0 = const()[name = string("input_39_strides_0"), val = tensor([1, 1])]; + tensor input_39_pad_0 = const()[name = string("input_39_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_39_dilations_0 = const()[name = string("input_39_dilations_0"), val = tensor([1, 1])]; + int32 input_39_groups_0 = const()[name = string("input_39_groups_0"), val = int32(1)]; + tensor input_39 = conv(dilations = input_39_dilations_0, groups = input_39_groups_0, pad = input_39_pad_0, pad_type = input_39_pad_type_0, strides = input_39_strides_0, weight = model_model_layers_23_mlp_gate_proj_weight_palettized, x = input_37)[name = string("input_39")]; + string up_states_5_pad_type_0 = const()[name = string("up_states_5_pad_type_0"), val = string("valid")]; + tensor up_states_5_strides_0 = const()[name = string("up_states_5_strides_0"), val = tensor([1, 1])]; + tensor up_states_5_pad_0 = const()[name = string("up_states_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_5_dilations_0 = const()[name = string("up_states_5_dilations_0"), val = tensor([1, 1])]; + int32 up_states_5_groups_0 = const()[name = string("up_states_5_groups_0"), val = int32(1)]; + tensor up_states_5 = conv(dilations = up_states_5_dilations_0, groups = up_states_5_groups_0, pad = up_states_5_pad_0, pad_type = up_states_5_pad_type_0, strides = up_states_5_strides_0, weight = model_model_layers_23_mlp_up_proj_weight_palettized, x = input_37)[name = string("up_states_5")]; + tensor gate_states_5 = silu(x = input_39)[name = string("gate_states_5")]; + tensor input_41 = mul(x = gate_states_5, y = up_states_5)[name = string("input_41")]; + string hidden_states_23_pad_type_0 = const()[name = string("hidden_states_23_pad_type_0"), val = string("valid")]; + tensor hidden_states_23_strides_0 = const()[name = string("hidden_states_23_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_23_pad_0 = const()[name = string("hidden_states_23_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_23_dilations_0 = const()[name = string("hidden_states_23_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_23_groups_0 = const()[name = string("hidden_states_23_groups_0"), val = int32(1)]; + tensor hidden_states_23 = conv(dilations = hidden_states_23_dilations_0, groups = hidden_states_23_groups_0, pad = hidden_states_23_pad_0, pad_type = hidden_states_23_pad_type_0, strides = hidden_states_23_strides_0, weight = model_model_layers_23_mlp_down_proj_weight_palettized, x = input_41)[name = string("hidden_states_23")]; + tensor var_795_axes_0 = const()[name = string("op_795_axes_0"), val = tensor([2])]; + tensor var_795 = squeeze(axes = var_795_axes_0, x = hidden_states_23)[name = string("op_795")]; + tensor var_796 = const()[name = string("op_796"), val = tensor([0, 2, 1])]; + tensor var_797 = transpose(perm = var_796, x = var_795)[name = string("transpose_16")]; + tensor hidden_states_25_cast_fp16 = add(x = hidden_states_21_cast_fp16, y = var_797)[name = string("hidden_states_25_cast_fp16")]; + tensor mean_13_axes_0 = const()[name = string("mean_13_axes_0"), val = tensor([-1])]; + bool mean_13_keep_dims_0 = const()[name = string("mean_13_keep_dims_0"), val = bool(true)]; + tensor mean_13_cast_fp16 = reduce_mean(axes = mean_13_axes_0, keep_dims = mean_13_keep_dims_0, x = hidden_states_25_cast_fp16)[name = string("mean_13_cast_fp16")]; + tensor input_43_cast_fp16 = sub(x = hidden_states_25_cast_fp16, y = mean_13_cast_fp16)[name = string("input_43_cast_fp16")]; + tensor var_805_axes_0 = const()[name = string("op_805_axes_0"), val = tensor([-1])]; + tensor model_model_layers_24_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_24_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745652480)))]; + tensor var_805_cast_fp16 = layer_norm(axes = var_805_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_24_input_layernorm_weight_to_fp16, x = input_43_cast_fp16)[name = string("op_805_cast_fp16")]; + tensor var_808 = const()[name = string("op_808"), val = tensor([0, 2, 1])]; + tensor var_810_axes_0 = const()[name = string("op_810_axes_0"), val = tensor([2])]; + tensor var_809 = transpose(perm = var_808, x = var_805_cast_fp16)[name = string("transpose_15")]; + tensor var_810 = expand_dims(axes = var_810_axes_0, x = var_809)[name = string("op_810")]; + string var_817_pad_type_0 = const()[name = string("op_817_pad_type_0"), val = string("valid")]; + tensor var_817_strides_0 = const()[name = string("op_817_strides_0"), val = tensor([1, 1])]; + tensor var_817_pad_0 = const()[name = string("op_817_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_817_dilations_0 = const()[name = string("op_817_dilations_0"), val = tensor([1, 1])]; + int32 var_817_groups_0 = const()[name = string("op_817_groups_0"), val = int32(1)]; + tensor var_817 = conv(dilations = var_817_dilations_0, groups = var_817_groups_0, pad = var_817_pad_0, pad_type = var_817_pad_type_0, strides = var_817_strides_0, weight = model_model_layers_24_self_attn_q_proj_weight_palettized, x = var_810)[name = string("op_817")]; + tensor var_818 = const()[name = string("op_818"), val = tensor([1, 24, 1, 128])]; + tensor var_819 = reshape(shape = var_818, x = var_817)[name = string("op_819")]; + string var_826_pad_type_0 = const()[name = string("op_826_pad_type_0"), val = string("valid")]; + tensor var_826_strides_0 = const()[name = string("op_826_strides_0"), val = tensor([1, 1])]; + tensor var_826_pad_0 = const()[name = string("op_826_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_826_dilations_0 = const()[name = string("op_826_dilations_0"), val = tensor([1, 1])]; + int32 var_826_groups_0 = const()[name = string("op_826_groups_0"), val = int32(1)]; + tensor var_826 = conv(dilations = var_826_dilations_0, groups = var_826_groups_0, pad = var_826_pad_0, pad_type = var_826_pad_type_0, strides = var_826_strides_0, weight = model_model_layers_24_self_attn_k_proj_weight_palettized, x = var_810)[name = string("op_826")]; + tensor var_827 = const()[name = string("op_827"), val = tensor([1, 8, 1, 128])]; + tensor var_828 = reshape(shape = var_827, x = var_826)[name = string("op_828")]; + string var_835_pad_type_0 = const()[name = string("op_835_pad_type_0"), val = string("valid")]; + tensor var_835_strides_0 = const()[name = string("op_835_strides_0"), val = tensor([1, 1])]; + tensor var_835_pad_0 = const()[name = string("op_835_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_835_dilations_0 = const()[name = string("op_835_dilations_0"), val = tensor([1, 1])]; + int32 var_835_groups_0 = const()[name = string("op_835_groups_0"), val = int32(1)]; + tensor var_835 = conv(dilations = var_835_dilations_0, groups = var_835_groups_0, pad = var_835_pad_0, pad_type = var_835_pad_type_0, strides = var_835_strides_0, weight = model_model_layers_24_self_attn_v_proj_weight_palettized, x = var_810)[name = string("op_835")]; + tensor var_836 = const()[name = string("op_836"), val = tensor([1, 8, 1, 128])]; + tensor var_837 = reshape(shape = var_836, x = var_835)[name = string("op_837")]; + tensor x1_13_begin_0 = const()[name = string("x1_13_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_13_end_0 = const()[name = string("x1_13_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_13_end_mask_0 = const()[name = string("x1_13_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_13 = slice_by_index(begin = x1_13_begin_0, end = x1_13_end_0, end_mask = x1_13_end_mask_0, x = var_819)[name = string("x1_13")]; + tensor x2_13_begin_0 = const()[name = string("x2_13_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_13_end_0 = const()[name = string("x2_13_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_13_end_mask_0 = const()[name = string("x2_13_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_13 = slice_by_index(begin = x2_13_begin_0, end = x2_13_end_0, end_mask = x2_13_end_mask_0, x = var_819)[name = string("x2_13")]; + tensor var_851_cast_fp16 = mul(x = x1_13, y = cos_3_cast_fp16)[name = string("op_851_cast_fp16")]; + tensor var_852_cast_fp16 = mul(x = x2_13, y = sin_3_cast_fp16)[name = string("op_852_cast_fp16")]; + tensor var_853_cast_fp16 = sub(x = var_851_cast_fp16, y = var_852_cast_fp16)[name = string("op_853_cast_fp16")]; + tensor var_854_cast_fp16 = mul(x = x2_13, y = cos_3_cast_fp16)[name = string("op_854_cast_fp16")]; + tensor var_855_cast_fp16 = mul(x = x1_13, y = sin_3_cast_fp16)[name = string("op_855_cast_fp16")]; + tensor var_856_cast_fp16 = add(x = var_854_cast_fp16, y = var_855_cast_fp16)[name = string("op_856_cast_fp16")]; + bool rotated_13_interleave_0 = const()[name = string("rotated_13_interleave_0"), val = bool(false)]; + tensor rotated_13_cast_fp16 = concat(axis = var_51, interleave = rotated_13_interleave_0, values = (var_853_cast_fp16, var_856_cast_fp16))[name = string("rotated_13_cast_fp16")]; + tensor x1_15_begin_0 = const()[name = string("x1_15_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_15_end_0 = const()[name = string("x1_15_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_15_end_mask_0 = const()[name = string("x1_15_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_15 = slice_by_index(begin = x1_15_begin_0, end = x1_15_end_0, end_mask = x1_15_end_mask_0, x = var_828)[name = string("x1_15")]; + tensor x2_15_begin_0 = const()[name = string("x2_15_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_15_end_0 = const()[name = string("x2_15_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_15_end_mask_0 = const()[name = string("x2_15_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_15 = slice_by_index(begin = x2_15_begin_0, end = x2_15_end_0, end_mask = x2_15_end_mask_0, x = var_828)[name = string("x2_15")]; + tensor var_872_cast_fp16 = mul(x = x1_15, y = cos_3_cast_fp16)[name = string("op_872_cast_fp16")]; + tensor var_873_cast_fp16 = mul(x = x2_15, y = sin_3_cast_fp16)[name = string("op_873_cast_fp16")]; + tensor var_874_cast_fp16 = sub(x = var_872_cast_fp16, y = var_873_cast_fp16)[name = string("op_874_cast_fp16")]; + tensor var_875_cast_fp16 = mul(x = x2_15, y = cos_3_cast_fp16)[name = string("op_875_cast_fp16")]; + tensor var_876_cast_fp16 = mul(x = x1_15, y = sin_3_cast_fp16)[name = string("op_876_cast_fp16")]; + tensor var_877_cast_fp16 = add(x = var_875_cast_fp16, y = var_876_cast_fp16)[name = string("op_877_cast_fp16")]; + bool rotated_15_interleave_0 = const()[name = string("rotated_15_interleave_0"), val = bool(false)]; + tensor rotated_15_cast_fp16 = concat(axis = var_51, interleave = rotated_15_interleave_0, values = (var_874_cast_fp16, var_877_cast_fp16))[name = string("rotated_15_cast_fp16")]; + tensor expand_dims_36 = const()[name = string("expand_dims_36"), val = tensor([24])]; + tensor expand_dims_37 = const()[name = string("expand_dims_37"), val = tensor([0])]; + tensor expand_dims_39 = const()[name = string("expand_dims_39"), val = tensor([0])]; + tensor expand_dims_40 = const()[name = string("expand_dims_40"), val = tensor([25])]; + int32 concat_26_axis_0 = const()[name = string("concat_26_axis_0"), val = int32(0)]; + bool concat_26_interleave_0 = const()[name = string("concat_26_interleave_0"), val = bool(false)]; + tensor concat_26 = concat(axis = concat_26_axis_0, interleave = concat_26_interleave_0, values = (expand_dims_36, expand_dims_37, current_pos, expand_dims_39))[name = string("concat_26")]; + tensor concat_27_values1_0 = const()[name = string("concat_27_values1_0"), val = tensor([0])]; + tensor concat_27_values3_0 = const()[name = string("concat_27_values3_0"), val = tensor([0])]; + int32 concat_27_axis_0 = const()[name = string("concat_27_axis_0"), val = int32(0)]; + bool concat_27_interleave_0 = const()[name = string("concat_27_interleave_0"), val = bool(false)]; + tensor concat_27 = concat(axis = concat_27_axis_0, interleave = concat_27_interleave_0, values = (expand_dims_40, concat_27_values1_0, var_327, concat_27_values3_0))[name = string("concat_27")]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_cast_fp16 = slice_update(begin = concat_26, begin_mask = model_model_kv_cache_0_internal_tensor_assign_7_begin_mask_0, end = concat_27, end_mask = model_model_kv_cache_0_internal_tensor_assign_7_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_7_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_7_stride_0, update = rotated_15_cast_fp16, x = coreml_update_state_19)[name = string("model_model_kv_cache_0_internal_tensor_assign_7_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_7_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_6_write_state")]; + tensor coreml_update_state_20 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_6")]; + tensor expand_dims_42 = const()[name = string("expand_dims_42"), val = tensor([52])]; + tensor expand_dims_43 = const()[name = string("expand_dims_43"), val = tensor([0])]; + tensor expand_dims_45 = const()[name = string("expand_dims_45"), val = tensor([0])]; + tensor expand_dims_46 = const()[name = string("expand_dims_46"), val = tensor([53])]; + int32 concat_30_axis_0 = const()[name = string("concat_30_axis_0"), val = int32(0)]; + bool concat_30_interleave_0 = const()[name = string("concat_30_interleave_0"), val = bool(false)]; + tensor concat_30 = concat(axis = concat_30_axis_0, interleave = concat_30_interleave_0, values = (expand_dims_42, expand_dims_43, current_pos, expand_dims_45))[name = string("concat_30")]; + tensor concat_31_values1_0 = const()[name = string("concat_31_values1_0"), val = tensor([0])]; + tensor concat_31_values3_0 = const()[name = string("concat_31_values3_0"), val = tensor([0])]; + int32 concat_31_axis_0 = const()[name = string("concat_31_axis_0"), val = int32(0)]; + bool concat_31_interleave_0 = const()[name = string("concat_31_interleave_0"), val = bool(false)]; + tensor concat_31 = concat(axis = concat_31_axis_0, interleave = concat_31_interleave_0, values = (expand_dims_46, concat_31_values1_0, var_327, concat_31_values3_0))[name = string("concat_31")]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_cast_fp16 = slice_update(begin = concat_30, begin_mask = model_model_kv_cache_0_internal_tensor_assign_8_begin_mask_0, end = concat_31, end_mask = model_model_kv_cache_0_internal_tensor_assign_8_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_8_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_8_stride_0, update = var_837, x = coreml_update_state_20)[name = string("model_model_kv_cache_0_internal_tensor_assign_8_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_8_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_7_write_state")]; + tensor coreml_update_state_21 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_7")]; + tensor var_897_begin_0 = const()[name = string("op_897_begin_0"), val = tensor([24, 0, 0, 0])]; + tensor var_897_end_0 = const()[name = string("op_897_end_0"), val = tensor([25, 8, 1024, 128])]; + tensor var_897_end_mask_0 = const()[name = string("op_897_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_897_cast_fp16 = slice_by_index(begin = var_897_begin_0, end = var_897_end_0, end_mask = var_897_end_mask_0, x = coreml_update_state_21)[name = string("op_897_cast_fp16")]; + tensor K_layer_cache_7_axes_0 = const()[name = string("K_layer_cache_7_axes_0"), val = tensor([0])]; + tensor K_layer_cache_7_cast_fp16 = squeeze(axes = K_layer_cache_7_axes_0, x = var_897_cast_fp16)[name = string("K_layer_cache_7_cast_fp16")]; + tensor var_899_begin_0 = const()[name = string("op_899_begin_0"), val = tensor([52, 0, 0, 0])]; + tensor var_899_end_0 = const()[name = string("op_899_end_0"), val = tensor([53, 8, 1024, 128])]; + tensor var_899_end_mask_0 = const()[name = string("op_899_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_899_cast_fp16 = slice_by_index(begin = var_899_begin_0, end = var_899_end_0, end_mask = var_899_end_mask_0, x = coreml_update_state_21)[name = string("op_899_cast_fp16")]; + tensor V_layer_cache_7_axes_0 = const()[name = string("V_layer_cache_7_axes_0"), val = tensor([0])]; + tensor V_layer_cache_7_cast_fp16 = squeeze(axes = V_layer_cache_7_axes_0, x = var_899_cast_fp16)[name = string("V_layer_cache_7_cast_fp16")]; + tensor x_95_axes_0 = const()[name = string("x_95_axes_0"), val = tensor([1])]; + tensor x_95_cast_fp16 = expand_dims(axes = x_95_axes_0, x = K_layer_cache_7_cast_fp16)[name = string("x_95_cast_fp16")]; + tensor var_908 = const()[name = string("op_908"), val = tensor([1, 3, 1, 1])]; + tensor x_97_cast_fp16 = tile(reps = var_908, x = x_95_cast_fp16)[name = string("x_97_cast_fp16")]; + tensor var_912 = const()[name = string("op_912"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_15_cast_fp16 = reshape(shape = var_912, x = x_97_cast_fp16)[name = string("key_states_15_cast_fp16")]; + tensor x_101_axes_0 = const()[name = string("x_101_axes_0"), val = tensor([1])]; + tensor x_101_cast_fp16 = expand_dims(axes = x_101_axes_0, x = V_layer_cache_7_cast_fp16)[name = string("x_101_cast_fp16")]; + tensor var_915 = const()[name = string("op_915"), val = tensor([1, 3, 1, 1])]; + tensor x_103_cast_fp16 = tile(reps = var_915, x = x_101_cast_fp16)[name = string("x_103_cast_fp16")]; + tensor var_919 = const()[name = string("op_919"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_15_cast_fp16 = reshape(shape = var_919, x = x_103_cast_fp16)[name = string("value_states_15_cast_fp16")]; + bool var_922_transpose_x_1 = const()[name = string("op_922_transpose_x_1"), val = bool(false)]; + bool var_922_transpose_y_1 = const()[name = string("op_922_transpose_y_1"), val = bool(true)]; + tensor var_922_cast_fp16 = matmul(transpose_x = var_922_transpose_x_1, transpose_y = var_922_transpose_y_1, x = rotated_13_cast_fp16, y = key_states_15_cast_fp16)[name = string("op_922_cast_fp16")]; + fp16 var_923_to_fp16 = const()[name = string("op_923_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_13_cast_fp16 = mul(x = var_922_cast_fp16, y = var_923_to_fp16)[name = string("attn_weights_13_cast_fp16")]; + tensor x_105_cast_fp16 = add(x = attn_weights_13_cast_fp16, y = causal_mask)[name = string("x_105_cast_fp16")]; + tensor reduce_max_3_axes_0 = const()[name = string("reduce_max_3_axes_0"), val = tensor([-1])]; + bool reduce_max_3_keep_dims_0 = const()[name = string("reduce_max_3_keep_dims_0"), val = bool(true)]; + tensor reduce_max_3_cast_fp16 = reduce_max(axes = reduce_max_3_axes_0, keep_dims = reduce_max_3_keep_dims_0, x = x_105_cast_fp16)[name = string("reduce_max_3_cast_fp16")]; + tensor x_107_cast_fp16 = sub(x = x_105_cast_fp16, y = reduce_max_3_cast_fp16)[name = string("x_107_cast_fp16")]; + tensor exp_x_7_cast_fp16 = exp(x = x_107_cast_fp16)[name = string("exp_x_7_cast_fp16")]; + tensor var_934_axes_0 = const()[name = string("op_934_axes_0"), val = tensor([-1])]; + bool var_934_keep_dims_0 = const()[name = string("op_934_keep_dims_0"), val = bool(true)]; + tensor var_934_cast_fp16 = reduce_sum(axes = var_934_axes_0, keep_dims = var_934_keep_dims_0, x = exp_x_7_cast_fp16)[name = string("op_934_cast_fp16")]; + tensor attn_weights_15_cast_fp16 = real_div(x = exp_x_7_cast_fp16, y = var_934_cast_fp16)[name = string("attn_weights_15_cast_fp16")]; + bool attn_output_19_transpose_x_0 = const()[name = string("attn_output_19_transpose_x_0"), val = bool(false)]; + bool attn_output_19_transpose_y_0 = const()[name = string("attn_output_19_transpose_y_0"), val = bool(false)]; + tensor attn_output_19_cast_fp16 = matmul(transpose_x = attn_output_19_transpose_x_0, transpose_y = attn_output_19_transpose_y_0, x = attn_weights_15_cast_fp16, y = value_states_15_cast_fp16)[name = string("attn_output_19_cast_fp16")]; + tensor var_937_perm_0 = const()[name = string("op_937_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_939 = const()[name = string("op_939"), val = tensor([1, 1, 3072])]; + tensor var_937_cast_fp16 = transpose(perm = var_937_perm_0, x = attn_output_19_cast_fp16)[name = string("transpose_14")]; + tensor input_47_cast_fp16 = reshape(shape = var_939, x = var_937_cast_fp16)[name = string("input_47_cast_fp16")]; + tensor model_model_layers_24_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745658688))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755095936))))[name = string("model_model_layers_24_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_3_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_24_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_47_cast_fp16)[name = string("linear_3_cast_fp16")]; + tensor hidden_states_29_cast_fp16 = add(x = hidden_states_25_cast_fp16, y = linear_3_cast_fp16)[name = string("hidden_states_29_cast_fp16")]; + tensor mean_15_axes_0 = const()[name = string("mean_15_axes_0"), val = tensor([-1])]; + bool mean_15_keep_dims_0 = const()[name = string("mean_15_keep_dims_0"), val = bool(true)]; + tensor mean_15_cast_fp16 = reduce_mean(axes = mean_15_axes_0, keep_dims = mean_15_keep_dims_0, x = hidden_states_29_cast_fp16)[name = string("mean_15_cast_fp16")]; + tensor input_49_cast_fp16 = sub(x = hidden_states_29_cast_fp16, y = mean_15_cast_fp16)[name = string("input_49_cast_fp16")]; + tensor var_950_axes_0 = const()[name = string("op_950_axes_0"), val = tensor([-1])]; + tensor model_model_layers_24_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_24_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755292608)))]; + tensor var_950_cast_fp16 = layer_norm(axes = var_950_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_24_post_attention_layernorm_weight_to_fp16, x = input_49_cast_fp16)[name = string("op_950_cast_fp16")]; + tensor var_957 = const()[name = string("op_957"), val = tensor([0, 2, 1])]; + tensor input_51_axes_0 = const()[name = string("input_51_axes_0"), val = tensor([2])]; + tensor var_958 = transpose(perm = var_957, x = var_950_cast_fp16)[name = string("transpose_13")]; + tensor input_51 = expand_dims(axes = input_51_axes_0, x = var_958)[name = string("input_51")]; + string input_53_pad_type_0 = const()[name = string("input_53_pad_type_0"), val = string("valid")]; + tensor input_53_strides_0 = const()[name = string("input_53_strides_0"), val = tensor([1, 1])]; + tensor input_53_pad_0 = const()[name = string("input_53_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_53_dilations_0 = const()[name = string("input_53_dilations_0"), val = tensor([1, 1])]; + int32 input_53_groups_0 = const()[name = string("input_53_groups_0"), val = int32(1)]; + tensor input_53 = conv(dilations = input_53_dilations_0, groups = input_53_groups_0, pad = input_53_pad_0, pad_type = input_53_pad_type_0, strides = input_53_strides_0, weight = model_model_layers_24_mlp_gate_proj_weight_palettized, x = input_51)[name = string("input_53")]; + string up_states_7_pad_type_0 = const()[name = string("up_states_7_pad_type_0"), val = string("valid")]; + tensor up_states_7_strides_0 = const()[name = string("up_states_7_strides_0"), val = tensor([1, 1])]; + tensor up_states_7_pad_0 = const()[name = string("up_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_7_dilations_0 = const()[name = string("up_states_7_dilations_0"), val = tensor([1, 1])]; + int32 up_states_7_groups_0 = const()[name = string("up_states_7_groups_0"), val = int32(1)]; + tensor up_states_7 = conv(dilations = up_states_7_dilations_0, groups = up_states_7_groups_0, pad = up_states_7_pad_0, pad_type = up_states_7_pad_type_0, strides = up_states_7_strides_0, weight = model_model_layers_24_mlp_up_proj_weight_palettized, x = input_51)[name = string("up_states_7")]; + tensor gate_states_7 = silu(x = input_53)[name = string("gate_states_7")]; + tensor input_55 = mul(x = gate_states_7, y = up_states_7)[name = string("input_55")]; + string hidden_states_31_pad_type_0 = const()[name = string("hidden_states_31_pad_type_0"), val = string("valid")]; + tensor hidden_states_31_strides_0 = const()[name = string("hidden_states_31_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_31_pad_0 = const()[name = string("hidden_states_31_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_31_dilations_0 = const()[name = string("hidden_states_31_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_31_groups_0 = const()[name = string("hidden_states_31_groups_0"), val = int32(1)]; + tensor hidden_states_31 = conv(dilations = hidden_states_31_dilations_0, groups = hidden_states_31_groups_0, pad = hidden_states_31_pad_0, pad_type = hidden_states_31_pad_type_0, strides = hidden_states_31_strides_0, weight = model_model_layers_24_mlp_down_proj_weight_palettized, x = input_55)[name = string("hidden_states_31")]; + tensor var_980_axes_0 = const()[name = string("op_980_axes_0"), val = tensor([2])]; + tensor var_980 = squeeze(axes = var_980_axes_0, x = hidden_states_31)[name = string("op_980")]; + tensor var_981 = const()[name = string("op_981"), val = tensor([0, 2, 1])]; + tensor var_982 = transpose(perm = var_981, x = var_980)[name = string("transpose_12")]; + tensor hidden_states_33_cast_fp16 = add(x = hidden_states_29_cast_fp16, y = var_982)[name = string("hidden_states_33_cast_fp16")]; + tensor mean_17_axes_0 = const()[name = string("mean_17_axes_0"), val = tensor([-1])]; + bool mean_17_keep_dims_0 = const()[name = string("mean_17_keep_dims_0"), val = bool(true)]; + tensor mean_17_cast_fp16 = reduce_mean(axes = mean_17_axes_0, keep_dims = mean_17_keep_dims_0, x = hidden_states_33_cast_fp16)[name = string("mean_17_cast_fp16")]; + tensor input_57_cast_fp16 = sub(x = hidden_states_33_cast_fp16, y = mean_17_cast_fp16)[name = string("input_57_cast_fp16")]; + tensor var_990_axes_0 = const()[name = string("op_990_axes_0"), val = tensor([-1])]; + tensor model_model_layers_25_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_25_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755298816)))]; + tensor var_990_cast_fp16 = layer_norm(axes = var_990_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_25_input_layernorm_weight_to_fp16, x = input_57_cast_fp16)[name = string("op_990_cast_fp16")]; + tensor var_993 = const()[name = string("op_993"), val = tensor([0, 2, 1])]; + tensor var_995_axes_0 = const()[name = string("op_995_axes_0"), val = tensor([2])]; + tensor var_994 = transpose(perm = var_993, x = var_990_cast_fp16)[name = string("transpose_11")]; + tensor var_995 = expand_dims(axes = var_995_axes_0, x = var_994)[name = string("op_995")]; + string var_1002_pad_type_0 = const()[name = string("op_1002_pad_type_0"), val = string("valid")]; + tensor var_1002_strides_0 = const()[name = string("op_1002_strides_0"), val = tensor([1, 1])]; + tensor var_1002_pad_0 = const()[name = string("op_1002_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1002_dilations_0 = const()[name = string("op_1002_dilations_0"), val = tensor([1, 1])]; + int32 var_1002_groups_0 = const()[name = string("op_1002_groups_0"), val = int32(1)]; + tensor var_1002 = conv(dilations = var_1002_dilations_0, groups = var_1002_groups_0, pad = var_1002_pad_0, pad_type = var_1002_pad_type_0, strides = var_1002_strides_0, weight = model_model_layers_25_self_attn_q_proj_weight_palettized, x = var_995)[name = string("op_1002")]; + tensor var_1003 = const()[name = string("op_1003"), val = tensor([1, 24, 1, 128])]; + tensor var_1004 = reshape(shape = var_1003, x = var_1002)[name = string("op_1004")]; + string var_1011_pad_type_0 = const()[name = string("op_1011_pad_type_0"), val = string("valid")]; + tensor var_1011_strides_0 = const()[name = string("op_1011_strides_0"), val = tensor([1, 1])]; + tensor var_1011_pad_0 = const()[name = string("op_1011_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1011_dilations_0 = const()[name = string("op_1011_dilations_0"), val = tensor([1, 1])]; + int32 var_1011_groups_0 = const()[name = string("op_1011_groups_0"), val = int32(1)]; + tensor var_1011 = conv(dilations = var_1011_dilations_0, groups = var_1011_groups_0, pad = var_1011_pad_0, pad_type = var_1011_pad_type_0, strides = var_1011_strides_0, weight = model_model_layers_25_self_attn_k_proj_weight_palettized, x = var_995)[name = string("op_1011")]; + tensor var_1012 = const()[name = string("op_1012"), val = tensor([1, 8, 1, 128])]; + tensor var_1013 = reshape(shape = var_1012, x = var_1011)[name = string("op_1013")]; + string var_1020_pad_type_0 = const()[name = string("op_1020_pad_type_0"), val = string("valid")]; + tensor var_1020_strides_0 = const()[name = string("op_1020_strides_0"), val = tensor([1, 1])]; + tensor var_1020_pad_0 = const()[name = string("op_1020_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1020_dilations_0 = const()[name = string("op_1020_dilations_0"), val = tensor([1, 1])]; + int32 var_1020_groups_0 = const()[name = string("op_1020_groups_0"), val = int32(1)]; + tensor var_1020 = conv(dilations = var_1020_dilations_0, groups = var_1020_groups_0, pad = var_1020_pad_0, pad_type = var_1020_pad_type_0, strides = var_1020_strides_0, weight = model_model_layers_25_self_attn_v_proj_weight_palettized, x = var_995)[name = string("op_1020")]; + tensor var_1021 = const()[name = string("op_1021"), val = tensor([1, 8, 1, 128])]; + tensor var_1022 = reshape(shape = var_1021, x = var_1020)[name = string("op_1022")]; + tensor x1_17_begin_0 = const()[name = string("x1_17_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_17_end_0 = const()[name = string("x1_17_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_17_end_mask_0 = const()[name = string("x1_17_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_17 = slice_by_index(begin = x1_17_begin_0, end = x1_17_end_0, end_mask = x1_17_end_mask_0, x = var_1004)[name = string("x1_17")]; + tensor x2_17_begin_0 = const()[name = string("x2_17_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_17_end_0 = const()[name = string("x2_17_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_17_end_mask_0 = const()[name = string("x2_17_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_17 = slice_by_index(begin = x2_17_begin_0, end = x2_17_end_0, end_mask = x2_17_end_mask_0, x = var_1004)[name = string("x2_17")]; + tensor var_1036_cast_fp16 = mul(x = x1_17, y = cos_3_cast_fp16)[name = string("op_1036_cast_fp16")]; + tensor var_1037_cast_fp16 = mul(x = x2_17, y = sin_3_cast_fp16)[name = string("op_1037_cast_fp16")]; + tensor var_1038_cast_fp16 = sub(x = var_1036_cast_fp16, y = var_1037_cast_fp16)[name = string("op_1038_cast_fp16")]; + tensor var_1039_cast_fp16 = mul(x = x2_17, y = cos_3_cast_fp16)[name = string("op_1039_cast_fp16")]; + tensor var_1040_cast_fp16 = mul(x = x1_17, y = sin_3_cast_fp16)[name = string("op_1040_cast_fp16")]; + tensor var_1041_cast_fp16 = add(x = var_1039_cast_fp16, y = var_1040_cast_fp16)[name = string("op_1041_cast_fp16")]; + bool rotated_17_interleave_0 = const()[name = string("rotated_17_interleave_0"), val = bool(false)]; + tensor rotated_17_cast_fp16 = concat(axis = var_51, interleave = rotated_17_interleave_0, values = (var_1038_cast_fp16, var_1041_cast_fp16))[name = string("rotated_17_cast_fp16")]; + tensor x1_19_begin_0 = const()[name = string("x1_19_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_19_end_0 = const()[name = string("x1_19_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_19_end_mask_0 = const()[name = string("x1_19_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_19 = slice_by_index(begin = x1_19_begin_0, end = x1_19_end_0, end_mask = x1_19_end_mask_0, x = var_1013)[name = string("x1_19")]; + tensor x2_19_begin_0 = const()[name = string("x2_19_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_19_end_0 = const()[name = string("x2_19_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_19_end_mask_0 = const()[name = string("x2_19_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_19 = slice_by_index(begin = x2_19_begin_0, end = x2_19_end_0, end_mask = x2_19_end_mask_0, x = var_1013)[name = string("x2_19")]; + tensor var_1057_cast_fp16 = mul(x = x1_19, y = cos_3_cast_fp16)[name = string("op_1057_cast_fp16")]; + tensor var_1058_cast_fp16 = mul(x = x2_19, y = sin_3_cast_fp16)[name = string("op_1058_cast_fp16")]; + tensor var_1059_cast_fp16 = sub(x = var_1057_cast_fp16, y = var_1058_cast_fp16)[name = string("op_1059_cast_fp16")]; + tensor var_1060_cast_fp16 = mul(x = x2_19, y = cos_3_cast_fp16)[name = string("op_1060_cast_fp16")]; + tensor var_1061_cast_fp16 = mul(x = x1_19, y = sin_3_cast_fp16)[name = string("op_1061_cast_fp16")]; + tensor var_1062_cast_fp16 = add(x = var_1060_cast_fp16, y = var_1061_cast_fp16)[name = string("op_1062_cast_fp16")]; + bool rotated_19_interleave_0 = const()[name = string("rotated_19_interleave_0"), val = bool(false)]; + tensor rotated_19_cast_fp16 = concat(axis = var_51, interleave = rotated_19_interleave_0, values = (var_1059_cast_fp16, var_1062_cast_fp16))[name = string("rotated_19_cast_fp16")]; + tensor expand_dims_48 = const()[name = string("expand_dims_48"), val = tensor([25])]; + tensor expand_dims_49 = const()[name = string("expand_dims_49"), val = tensor([0])]; + tensor expand_dims_51 = const()[name = string("expand_dims_51"), val = tensor([0])]; + tensor expand_dims_52 = const()[name = string("expand_dims_52"), val = tensor([26])]; + int32 concat_34_axis_0 = const()[name = string("concat_34_axis_0"), val = int32(0)]; + bool concat_34_interleave_0 = const()[name = string("concat_34_interleave_0"), val = bool(false)]; + tensor concat_34 = concat(axis = concat_34_axis_0, interleave = concat_34_interleave_0, values = (expand_dims_48, expand_dims_49, current_pos, expand_dims_51))[name = string("concat_34")]; + tensor concat_35_values1_0 = const()[name = string("concat_35_values1_0"), val = tensor([0])]; + tensor concat_35_values3_0 = const()[name = string("concat_35_values3_0"), val = tensor([0])]; + int32 concat_35_axis_0 = const()[name = string("concat_35_axis_0"), val = int32(0)]; + bool concat_35_interleave_0 = const()[name = string("concat_35_interleave_0"), val = bool(false)]; + tensor concat_35 = concat(axis = concat_35_axis_0, interleave = concat_35_interleave_0, values = (expand_dims_52, concat_35_values1_0, var_327, concat_35_values3_0))[name = string("concat_35")]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_cast_fp16 = slice_update(begin = concat_34, begin_mask = model_model_kv_cache_0_internal_tensor_assign_9_begin_mask_0, end = concat_35, end_mask = model_model_kv_cache_0_internal_tensor_assign_9_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_9_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_9_stride_0, update = rotated_19_cast_fp16, x = coreml_update_state_21)[name = string("model_model_kv_cache_0_internal_tensor_assign_9_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_9_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_8_write_state")]; + tensor coreml_update_state_22 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_8")]; + tensor expand_dims_54 = const()[name = string("expand_dims_54"), val = tensor([53])]; + tensor expand_dims_55 = const()[name = string("expand_dims_55"), val = tensor([0])]; + tensor expand_dims_57 = const()[name = string("expand_dims_57"), val = tensor([0])]; + tensor expand_dims_58 = const()[name = string("expand_dims_58"), val = tensor([54])]; + int32 concat_38_axis_0 = const()[name = string("concat_38_axis_0"), val = int32(0)]; + bool concat_38_interleave_0 = const()[name = string("concat_38_interleave_0"), val = bool(false)]; + tensor concat_38 = concat(axis = concat_38_axis_0, interleave = concat_38_interleave_0, values = (expand_dims_54, expand_dims_55, current_pos, expand_dims_57))[name = string("concat_38")]; + tensor concat_39_values1_0 = const()[name = string("concat_39_values1_0"), val = tensor([0])]; + tensor concat_39_values3_0 = const()[name = string("concat_39_values3_0"), val = tensor([0])]; + int32 concat_39_axis_0 = const()[name = string("concat_39_axis_0"), val = int32(0)]; + bool concat_39_interleave_0 = const()[name = string("concat_39_interleave_0"), val = bool(false)]; + tensor concat_39 = concat(axis = concat_39_axis_0, interleave = concat_39_interleave_0, values = (expand_dims_58, concat_39_values1_0, var_327, concat_39_values3_0))[name = string("concat_39")]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_cast_fp16 = slice_update(begin = concat_38, begin_mask = model_model_kv_cache_0_internal_tensor_assign_10_begin_mask_0, end = concat_39, end_mask = model_model_kv_cache_0_internal_tensor_assign_10_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_10_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_10_stride_0, update = var_1022, x = coreml_update_state_22)[name = string("model_model_kv_cache_0_internal_tensor_assign_10_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_10_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_9_write_state")]; + tensor coreml_update_state_23 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_9")]; + tensor var_1082_begin_0 = const()[name = string("op_1082_begin_0"), val = tensor([25, 0, 0, 0])]; + tensor var_1082_end_0 = const()[name = string("op_1082_end_0"), val = tensor([26, 8, 1024, 128])]; + tensor var_1082_end_mask_0 = const()[name = string("op_1082_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1082_cast_fp16 = slice_by_index(begin = var_1082_begin_0, end = var_1082_end_0, end_mask = var_1082_end_mask_0, x = coreml_update_state_23)[name = string("op_1082_cast_fp16")]; + tensor K_layer_cache_9_axes_0 = const()[name = string("K_layer_cache_9_axes_0"), val = tensor([0])]; + tensor K_layer_cache_9_cast_fp16 = squeeze(axes = K_layer_cache_9_axes_0, x = var_1082_cast_fp16)[name = string("K_layer_cache_9_cast_fp16")]; + tensor var_1084_begin_0 = const()[name = string("op_1084_begin_0"), val = tensor([53, 0, 0, 0])]; + tensor var_1084_end_0 = const()[name = string("op_1084_end_0"), val = tensor([54, 8, 1024, 128])]; + tensor var_1084_end_mask_0 = const()[name = string("op_1084_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1084_cast_fp16 = slice_by_index(begin = var_1084_begin_0, end = var_1084_end_0, end_mask = var_1084_end_mask_0, x = coreml_update_state_23)[name = string("op_1084_cast_fp16")]; + tensor V_layer_cache_9_axes_0 = const()[name = string("V_layer_cache_9_axes_0"), val = tensor([0])]; + tensor V_layer_cache_9_cast_fp16 = squeeze(axes = V_layer_cache_9_axes_0, x = var_1084_cast_fp16)[name = string("V_layer_cache_9_cast_fp16")]; + tensor x_123_axes_0 = const()[name = string("x_123_axes_0"), val = tensor([1])]; + tensor x_123_cast_fp16 = expand_dims(axes = x_123_axes_0, x = K_layer_cache_9_cast_fp16)[name = string("x_123_cast_fp16")]; + tensor var_1093 = const()[name = string("op_1093"), val = tensor([1, 3, 1, 1])]; + tensor x_125_cast_fp16 = tile(reps = var_1093, x = x_123_cast_fp16)[name = string("x_125_cast_fp16")]; + tensor var_1097 = const()[name = string("op_1097"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_19_cast_fp16 = reshape(shape = var_1097, x = x_125_cast_fp16)[name = string("key_states_19_cast_fp16")]; + tensor x_129_axes_0 = const()[name = string("x_129_axes_0"), val = tensor([1])]; + tensor x_129_cast_fp16 = expand_dims(axes = x_129_axes_0, x = V_layer_cache_9_cast_fp16)[name = string("x_129_cast_fp16")]; + tensor var_1100 = const()[name = string("op_1100"), val = tensor([1, 3, 1, 1])]; + tensor x_131_cast_fp16 = tile(reps = var_1100, x = x_129_cast_fp16)[name = string("x_131_cast_fp16")]; + tensor var_1104 = const()[name = string("op_1104"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_19_cast_fp16 = reshape(shape = var_1104, x = x_131_cast_fp16)[name = string("value_states_19_cast_fp16")]; + bool var_1107_transpose_x_1 = const()[name = string("op_1107_transpose_x_1"), val = bool(false)]; + bool var_1107_transpose_y_1 = const()[name = string("op_1107_transpose_y_1"), val = bool(true)]; + tensor var_1107_cast_fp16 = matmul(transpose_x = var_1107_transpose_x_1, transpose_y = var_1107_transpose_y_1, x = rotated_17_cast_fp16, y = key_states_19_cast_fp16)[name = string("op_1107_cast_fp16")]; + fp16 var_1108_to_fp16 = const()[name = string("op_1108_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_17_cast_fp16 = mul(x = var_1107_cast_fp16, y = var_1108_to_fp16)[name = string("attn_weights_17_cast_fp16")]; + tensor x_133_cast_fp16 = add(x = attn_weights_17_cast_fp16, y = causal_mask)[name = string("x_133_cast_fp16")]; + tensor reduce_max_4_axes_0 = const()[name = string("reduce_max_4_axes_0"), val = tensor([-1])]; + bool reduce_max_4_keep_dims_0 = const()[name = string("reduce_max_4_keep_dims_0"), val = bool(true)]; + tensor reduce_max_4_cast_fp16 = reduce_max(axes = reduce_max_4_axes_0, keep_dims = reduce_max_4_keep_dims_0, x = x_133_cast_fp16)[name = string("reduce_max_4_cast_fp16")]; + tensor x_135_cast_fp16 = sub(x = x_133_cast_fp16, y = reduce_max_4_cast_fp16)[name = string("x_135_cast_fp16")]; + tensor exp_x_9_cast_fp16 = exp(x = x_135_cast_fp16)[name = string("exp_x_9_cast_fp16")]; + tensor var_1119_axes_0 = const()[name = string("op_1119_axes_0"), val = tensor([-1])]; + bool var_1119_keep_dims_0 = const()[name = string("op_1119_keep_dims_0"), val = bool(true)]; + tensor var_1119_cast_fp16 = reduce_sum(axes = var_1119_axes_0, keep_dims = var_1119_keep_dims_0, x = exp_x_9_cast_fp16)[name = string("op_1119_cast_fp16")]; + tensor attn_weights_19_cast_fp16 = real_div(x = exp_x_9_cast_fp16, y = var_1119_cast_fp16)[name = string("attn_weights_19_cast_fp16")]; + bool attn_output_25_transpose_x_0 = const()[name = string("attn_output_25_transpose_x_0"), val = bool(false)]; + bool attn_output_25_transpose_y_0 = const()[name = string("attn_output_25_transpose_y_0"), val = bool(false)]; + tensor attn_output_25_cast_fp16 = matmul(transpose_x = attn_output_25_transpose_x_0, transpose_y = attn_output_25_transpose_y_0, x = attn_weights_19_cast_fp16, y = value_states_19_cast_fp16)[name = string("attn_output_25_cast_fp16")]; + tensor var_1122_perm_0 = const()[name = string("op_1122_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1124 = const()[name = string("op_1124"), val = tensor([1, 1, 3072])]; + tensor var_1122_cast_fp16 = transpose(perm = var_1122_perm_0, x = attn_output_25_cast_fp16)[name = string("transpose_10")]; + tensor input_61_cast_fp16 = reshape(shape = var_1124, x = var_1122_cast_fp16)[name = string("input_61_cast_fp16")]; + tensor model_model_layers_25_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755305024))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764742272))))[name = string("model_model_layers_25_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_4_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_25_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_61_cast_fp16)[name = string("linear_4_cast_fp16")]; + tensor hidden_states_37_cast_fp16 = add(x = hidden_states_33_cast_fp16, y = linear_4_cast_fp16)[name = string("hidden_states_37_cast_fp16")]; + tensor mean_19_axes_0 = const()[name = string("mean_19_axes_0"), val = tensor([-1])]; + bool mean_19_keep_dims_0 = const()[name = string("mean_19_keep_dims_0"), val = bool(true)]; + tensor mean_19_cast_fp16 = reduce_mean(axes = mean_19_axes_0, keep_dims = mean_19_keep_dims_0, x = hidden_states_37_cast_fp16)[name = string("mean_19_cast_fp16")]; + tensor input_63_cast_fp16 = sub(x = hidden_states_37_cast_fp16, y = mean_19_cast_fp16)[name = string("input_63_cast_fp16")]; + tensor var_1135_axes_0 = const()[name = string("op_1135_axes_0"), val = tensor([-1])]; + tensor model_model_layers_25_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_25_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764938944)))]; + tensor var_1135_cast_fp16 = layer_norm(axes = var_1135_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_25_post_attention_layernorm_weight_to_fp16, x = input_63_cast_fp16)[name = string("op_1135_cast_fp16")]; + tensor var_1142 = const()[name = string("op_1142"), val = tensor([0, 2, 1])]; + tensor input_65_axes_0 = const()[name = string("input_65_axes_0"), val = tensor([2])]; + tensor var_1143 = transpose(perm = var_1142, x = var_1135_cast_fp16)[name = string("transpose_9")]; + tensor input_65 = expand_dims(axes = input_65_axes_0, x = var_1143)[name = string("input_65")]; + string input_67_pad_type_0 = const()[name = string("input_67_pad_type_0"), val = string("valid")]; + tensor input_67_strides_0 = const()[name = string("input_67_strides_0"), val = tensor([1, 1])]; + tensor input_67_pad_0 = const()[name = string("input_67_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_67_dilations_0 = const()[name = string("input_67_dilations_0"), val = tensor([1, 1])]; + int32 input_67_groups_0 = const()[name = string("input_67_groups_0"), val = int32(1)]; + tensor input_67 = conv(dilations = input_67_dilations_0, groups = input_67_groups_0, pad = input_67_pad_0, pad_type = input_67_pad_type_0, strides = input_67_strides_0, weight = model_model_layers_25_mlp_gate_proj_weight_palettized, x = input_65)[name = string("input_67")]; + string up_states_9_pad_type_0 = const()[name = string("up_states_9_pad_type_0"), val = string("valid")]; + tensor up_states_9_strides_0 = const()[name = string("up_states_9_strides_0"), val = tensor([1, 1])]; + tensor up_states_9_pad_0 = const()[name = string("up_states_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_9_dilations_0 = const()[name = string("up_states_9_dilations_0"), val = tensor([1, 1])]; + int32 up_states_9_groups_0 = const()[name = string("up_states_9_groups_0"), val = int32(1)]; + tensor up_states_9 = conv(dilations = up_states_9_dilations_0, groups = up_states_9_groups_0, pad = up_states_9_pad_0, pad_type = up_states_9_pad_type_0, strides = up_states_9_strides_0, weight = model_model_layers_25_mlp_up_proj_weight_palettized, x = input_65)[name = string("up_states_9")]; + tensor gate_states_9 = silu(x = input_67)[name = string("gate_states_9")]; + tensor input_69 = mul(x = gate_states_9, y = up_states_9)[name = string("input_69")]; + string hidden_states_39_pad_type_0 = const()[name = string("hidden_states_39_pad_type_0"), val = string("valid")]; + tensor hidden_states_39_strides_0 = const()[name = string("hidden_states_39_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_39_pad_0 = const()[name = string("hidden_states_39_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_39_dilations_0 = const()[name = string("hidden_states_39_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_39_groups_0 = const()[name = string("hidden_states_39_groups_0"), val = int32(1)]; + tensor hidden_states_39 = conv(dilations = hidden_states_39_dilations_0, groups = hidden_states_39_groups_0, pad = hidden_states_39_pad_0, pad_type = hidden_states_39_pad_type_0, strides = hidden_states_39_strides_0, weight = model_model_layers_25_mlp_down_proj_weight_palettized, x = input_69)[name = string("hidden_states_39")]; + tensor var_1165_axes_0 = const()[name = string("op_1165_axes_0"), val = tensor([2])]; + tensor var_1165 = squeeze(axes = var_1165_axes_0, x = hidden_states_39)[name = string("op_1165")]; + tensor var_1166 = const()[name = string("op_1166"), val = tensor([0, 2, 1])]; + tensor var_1167 = transpose(perm = var_1166, x = var_1165)[name = string("transpose_8")]; + tensor hidden_states_41_cast_fp16 = add(x = hidden_states_37_cast_fp16, y = var_1167)[name = string("hidden_states_41_cast_fp16")]; + tensor mean_21_axes_0 = const()[name = string("mean_21_axes_0"), val = tensor([-1])]; + bool mean_21_keep_dims_0 = const()[name = string("mean_21_keep_dims_0"), val = bool(true)]; + tensor mean_21_cast_fp16 = reduce_mean(axes = mean_21_axes_0, keep_dims = mean_21_keep_dims_0, x = hidden_states_41_cast_fp16)[name = string("mean_21_cast_fp16")]; + tensor input_71_cast_fp16 = sub(x = hidden_states_41_cast_fp16, y = mean_21_cast_fp16)[name = string("input_71_cast_fp16")]; + tensor var_1175_axes_0 = const()[name = string("op_1175_axes_0"), val = tensor([-1])]; + tensor model_model_layers_26_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_26_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764945152)))]; + tensor var_1175_cast_fp16 = layer_norm(axes = var_1175_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_26_input_layernorm_weight_to_fp16, x = input_71_cast_fp16)[name = string("op_1175_cast_fp16")]; + tensor var_1178 = const()[name = string("op_1178"), val = tensor([0, 2, 1])]; + tensor var_1180_axes_0 = const()[name = string("op_1180_axes_0"), val = tensor([2])]; + tensor var_1179 = transpose(perm = var_1178, x = var_1175_cast_fp16)[name = string("transpose_7")]; + tensor var_1180 = expand_dims(axes = var_1180_axes_0, x = var_1179)[name = string("op_1180")]; + string var_1187_pad_type_0 = const()[name = string("op_1187_pad_type_0"), val = string("valid")]; + tensor var_1187_strides_0 = const()[name = string("op_1187_strides_0"), val = tensor([1, 1])]; + tensor var_1187_pad_0 = const()[name = string("op_1187_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1187_dilations_0 = const()[name = string("op_1187_dilations_0"), val = tensor([1, 1])]; + int32 var_1187_groups_0 = const()[name = string("op_1187_groups_0"), val = int32(1)]; + tensor var_1187 = conv(dilations = var_1187_dilations_0, groups = var_1187_groups_0, pad = var_1187_pad_0, pad_type = var_1187_pad_type_0, strides = var_1187_strides_0, weight = model_model_layers_26_self_attn_q_proj_weight_palettized, x = var_1180)[name = string("op_1187")]; + tensor var_1188 = const()[name = string("op_1188"), val = tensor([1, 24, 1, 128])]; + tensor var_1189 = reshape(shape = var_1188, x = var_1187)[name = string("op_1189")]; + string var_1196_pad_type_0 = const()[name = string("op_1196_pad_type_0"), val = string("valid")]; + tensor var_1196_strides_0 = const()[name = string("op_1196_strides_0"), val = tensor([1, 1])]; + tensor var_1196_pad_0 = const()[name = string("op_1196_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1196_dilations_0 = const()[name = string("op_1196_dilations_0"), val = tensor([1, 1])]; + int32 var_1196_groups_0 = const()[name = string("op_1196_groups_0"), val = int32(1)]; + tensor var_1196 = conv(dilations = var_1196_dilations_0, groups = var_1196_groups_0, pad = var_1196_pad_0, pad_type = var_1196_pad_type_0, strides = var_1196_strides_0, weight = model_model_layers_26_self_attn_k_proj_weight_palettized, x = var_1180)[name = string("op_1196")]; + tensor var_1197 = const()[name = string("op_1197"), val = tensor([1, 8, 1, 128])]; + tensor var_1198 = reshape(shape = var_1197, x = var_1196)[name = string("op_1198")]; + string var_1205_pad_type_0 = const()[name = string("op_1205_pad_type_0"), val = string("valid")]; + tensor var_1205_strides_0 = const()[name = string("op_1205_strides_0"), val = tensor([1, 1])]; + tensor var_1205_pad_0 = const()[name = string("op_1205_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1205_dilations_0 = const()[name = string("op_1205_dilations_0"), val = tensor([1, 1])]; + int32 var_1205_groups_0 = const()[name = string("op_1205_groups_0"), val = int32(1)]; + tensor var_1205 = conv(dilations = var_1205_dilations_0, groups = var_1205_groups_0, pad = var_1205_pad_0, pad_type = var_1205_pad_type_0, strides = var_1205_strides_0, weight = model_model_layers_26_self_attn_v_proj_weight_palettized, x = var_1180)[name = string("op_1205")]; + tensor var_1206 = const()[name = string("op_1206"), val = tensor([1, 8, 1, 128])]; + tensor var_1207 = reshape(shape = var_1206, x = var_1205)[name = string("op_1207")]; + tensor x1_21_begin_0 = const()[name = string("x1_21_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_21_end_0 = const()[name = string("x1_21_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_21_end_mask_0 = const()[name = string("x1_21_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_21 = slice_by_index(begin = x1_21_begin_0, end = x1_21_end_0, end_mask = x1_21_end_mask_0, x = var_1189)[name = string("x1_21")]; + tensor x2_21_begin_0 = const()[name = string("x2_21_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_21_end_0 = const()[name = string("x2_21_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_21_end_mask_0 = const()[name = string("x2_21_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_21 = slice_by_index(begin = x2_21_begin_0, end = x2_21_end_0, end_mask = x2_21_end_mask_0, x = var_1189)[name = string("x2_21")]; + tensor var_1221_cast_fp16 = mul(x = x1_21, y = cos_3_cast_fp16)[name = string("op_1221_cast_fp16")]; + tensor var_1222_cast_fp16 = mul(x = x2_21, y = sin_3_cast_fp16)[name = string("op_1222_cast_fp16")]; + tensor var_1223_cast_fp16 = sub(x = var_1221_cast_fp16, y = var_1222_cast_fp16)[name = string("op_1223_cast_fp16")]; + tensor var_1224_cast_fp16 = mul(x = x2_21, y = cos_3_cast_fp16)[name = string("op_1224_cast_fp16")]; + tensor var_1225_cast_fp16 = mul(x = x1_21, y = sin_3_cast_fp16)[name = string("op_1225_cast_fp16")]; + tensor var_1226_cast_fp16 = add(x = var_1224_cast_fp16, y = var_1225_cast_fp16)[name = string("op_1226_cast_fp16")]; + bool rotated_21_interleave_0 = const()[name = string("rotated_21_interleave_0"), val = bool(false)]; + tensor rotated_21_cast_fp16 = concat(axis = var_51, interleave = rotated_21_interleave_0, values = (var_1223_cast_fp16, var_1226_cast_fp16))[name = string("rotated_21_cast_fp16")]; + tensor x1_23_begin_0 = const()[name = string("x1_23_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_23_end_0 = const()[name = string("x1_23_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_23_end_mask_0 = const()[name = string("x1_23_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_23 = slice_by_index(begin = x1_23_begin_0, end = x1_23_end_0, end_mask = x1_23_end_mask_0, x = var_1198)[name = string("x1_23")]; + tensor x2_23_begin_0 = const()[name = string("x2_23_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_23_end_0 = const()[name = string("x2_23_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_23_end_mask_0 = const()[name = string("x2_23_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_23 = slice_by_index(begin = x2_23_begin_0, end = x2_23_end_0, end_mask = x2_23_end_mask_0, x = var_1198)[name = string("x2_23")]; + tensor var_1242_cast_fp16 = mul(x = x1_23, y = cos_3_cast_fp16)[name = string("op_1242_cast_fp16")]; + tensor var_1243_cast_fp16 = mul(x = x2_23, y = sin_3_cast_fp16)[name = string("op_1243_cast_fp16")]; + tensor var_1244_cast_fp16 = sub(x = var_1242_cast_fp16, y = var_1243_cast_fp16)[name = string("op_1244_cast_fp16")]; + tensor var_1245_cast_fp16 = mul(x = x2_23, y = cos_3_cast_fp16)[name = string("op_1245_cast_fp16")]; + tensor var_1246_cast_fp16 = mul(x = x1_23, y = sin_3_cast_fp16)[name = string("op_1246_cast_fp16")]; + tensor var_1247_cast_fp16 = add(x = var_1245_cast_fp16, y = var_1246_cast_fp16)[name = string("op_1247_cast_fp16")]; + bool rotated_23_interleave_0 = const()[name = string("rotated_23_interleave_0"), val = bool(false)]; + tensor rotated_23_cast_fp16 = concat(axis = var_51, interleave = rotated_23_interleave_0, values = (var_1244_cast_fp16, var_1247_cast_fp16))[name = string("rotated_23_cast_fp16")]; + tensor expand_dims_60 = const()[name = string("expand_dims_60"), val = tensor([26])]; + tensor expand_dims_61 = const()[name = string("expand_dims_61"), val = tensor([0])]; + tensor expand_dims_63 = const()[name = string("expand_dims_63"), val = tensor([0])]; + tensor expand_dims_64 = const()[name = string("expand_dims_64"), val = tensor([27])]; + int32 concat_42_axis_0 = const()[name = string("concat_42_axis_0"), val = int32(0)]; + bool concat_42_interleave_0 = const()[name = string("concat_42_interleave_0"), val = bool(false)]; + tensor concat_42 = concat(axis = concat_42_axis_0, interleave = concat_42_interleave_0, values = (expand_dims_60, expand_dims_61, current_pos, expand_dims_63))[name = string("concat_42")]; + tensor concat_43_values1_0 = const()[name = string("concat_43_values1_0"), val = tensor([0])]; + tensor concat_43_values3_0 = const()[name = string("concat_43_values3_0"), val = tensor([0])]; + int32 concat_43_axis_0 = const()[name = string("concat_43_axis_0"), val = int32(0)]; + bool concat_43_interleave_0 = const()[name = string("concat_43_interleave_0"), val = bool(false)]; + tensor concat_43 = concat(axis = concat_43_axis_0, interleave = concat_43_interleave_0, values = (expand_dims_64, concat_43_values1_0, var_327, concat_43_values3_0))[name = string("concat_43")]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_cast_fp16 = slice_update(begin = concat_42, begin_mask = model_model_kv_cache_0_internal_tensor_assign_11_begin_mask_0, end = concat_43, end_mask = model_model_kv_cache_0_internal_tensor_assign_11_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_11_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_11_stride_0, update = rotated_23_cast_fp16, x = coreml_update_state_23)[name = string("model_model_kv_cache_0_internal_tensor_assign_11_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_11_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_10_write_state")]; + tensor coreml_update_state_24 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_10")]; + tensor expand_dims_66 = const()[name = string("expand_dims_66"), val = tensor([54])]; + tensor expand_dims_67 = const()[name = string("expand_dims_67"), val = tensor([0])]; + tensor expand_dims_69 = const()[name = string("expand_dims_69"), val = tensor([0])]; + tensor expand_dims_70 = const()[name = string("expand_dims_70"), val = tensor([55])]; + int32 concat_46_axis_0 = const()[name = string("concat_46_axis_0"), val = int32(0)]; + bool concat_46_interleave_0 = const()[name = string("concat_46_interleave_0"), val = bool(false)]; + tensor concat_46 = concat(axis = concat_46_axis_0, interleave = concat_46_interleave_0, values = (expand_dims_66, expand_dims_67, current_pos, expand_dims_69))[name = string("concat_46")]; + tensor concat_47_values1_0 = const()[name = string("concat_47_values1_0"), val = tensor([0])]; + tensor concat_47_values3_0 = const()[name = string("concat_47_values3_0"), val = tensor([0])]; + int32 concat_47_axis_0 = const()[name = string("concat_47_axis_0"), val = int32(0)]; + bool concat_47_interleave_0 = const()[name = string("concat_47_interleave_0"), val = bool(false)]; + tensor concat_47 = concat(axis = concat_47_axis_0, interleave = concat_47_interleave_0, values = (expand_dims_70, concat_47_values1_0, var_327, concat_47_values3_0))[name = string("concat_47")]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_cast_fp16 = slice_update(begin = concat_46, begin_mask = model_model_kv_cache_0_internal_tensor_assign_12_begin_mask_0, end = concat_47, end_mask = model_model_kv_cache_0_internal_tensor_assign_12_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_12_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_12_stride_0, update = var_1207, x = coreml_update_state_24)[name = string("model_model_kv_cache_0_internal_tensor_assign_12_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_12_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_11_write_state")]; + tensor coreml_update_state_25 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_11")]; + tensor var_1267_begin_0 = const()[name = string("op_1267_begin_0"), val = tensor([26, 0, 0, 0])]; + tensor var_1267_end_0 = const()[name = string("op_1267_end_0"), val = tensor([27, 8, 1024, 128])]; + tensor var_1267_end_mask_0 = const()[name = string("op_1267_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1267_cast_fp16 = slice_by_index(begin = var_1267_begin_0, end = var_1267_end_0, end_mask = var_1267_end_mask_0, x = coreml_update_state_25)[name = string("op_1267_cast_fp16")]; + tensor K_layer_cache_11_axes_0 = const()[name = string("K_layer_cache_11_axes_0"), val = tensor([0])]; + tensor K_layer_cache_11_cast_fp16 = squeeze(axes = K_layer_cache_11_axes_0, x = var_1267_cast_fp16)[name = string("K_layer_cache_11_cast_fp16")]; + tensor var_1269_begin_0 = const()[name = string("op_1269_begin_0"), val = tensor([54, 0, 0, 0])]; + tensor var_1269_end_0 = const()[name = string("op_1269_end_0"), val = tensor([55, 8, 1024, 128])]; + tensor var_1269_end_mask_0 = const()[name = string("op_1269_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1269_cast_fp16 = slice_by_index(begin = var_1269_begin_0, end = var_1269_end_0, end_mask = var_1269_end_mask_0, x = coreml_update_state_25)[name = string("op_1269_cast_fp16")]; + tensor V_layer_cache_11_axes_0 = const()[name = string("V_layer_cache_11_axes_0"), val = tensor([0])]; + tensor V_layer_cache_11_cast_fp16 = squeeze(axes = V_layer_cache_11_axes_0, x = var_1269_cast_fp16)[name = string("V_layer_cache_11_cast_fp16")]; + tensor x_151_axes_0 = const()[name = string("x_151_axes_0"), val = tensor([1])]; + tensor x_151_cast_fp16 = expand_dims(axes = x_151_axes_0, x = K_layer_cache_11_cast_fp16)[name = string("x_151_cast_fp16")]; + tensor var_1278 = const()[name = string("op_1278"), val = tensor([1, 3, 1, 1])]; + tensor x_153_cast_fp16 = tile(reps = var_1278, x = x_151_cast_fp16)[name = string("x_153_cast_fp16")]; + tensor var_1282 = const()[name = string("op_1282"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_23_cast_fp16 = reshape(shape = var_1282, x = x_153_cast_fp16)[name = string("key_states_23_cast_fp16")]; + tensor x_157_axes_0 = const()[name = string("x_157_axes_0"), val = tensor([1])]; + tensor x_157_cast_fp16 = expand_dims(axes = x_157_axes_0, x = V_layer_cache_11_cast_fp16)[name = string("x_157_cast_fp16")]; + tensor var_1285 = const()[name = string("op_1285"), val = tensor([1, 3, 1, 1])]; + tensor x_159_cast_fp16 = tile(reps = var_1285, x = x_157_cast_fp16)[name = string("x_159_cast_fp16")]; + tensor var_1289 = const()[name = string("op_1289"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_23_cast_fp16 = reshape(shape = var_1289, x = x_159_cast_fp16)[name = string("value_states_23_cast_fp16")]; + bool var_1292_transpose_x_1 = const()[name = string("op_1292_transpose_x_1"), val = bool(false)]; + bool var_1292_transpose_y_1 = const()[name = string("op_1292_transpose_y_1"), val = bool(true)]; + tensor var_1292_cast_fp16 = matmul(transpose_x = var_1292_transpose_x_1, transpose_y = var_1292_transpose_y_1, x = rotated_21_cast_fp16, y = key_states_23_cast_fp16)[name = string("op_1292_cast_fp16")]; + fp16 var_1293_to_fp16 = const()[name = string("op_1293_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_21_cast_fp16 = mul(x = var_1292_cast_fp16, y = var_1293_to_fp16)[name = string("attn_weights_21_cast_fp16")]; + tensor x_161_cast_fp16 = add(x = attn_weights_21_cast_fp16, y = causal_mask)[name = string("x_161_cast_fp16")]; + tensor reduce_max_5_axes_0 = const()[name = string("reduce_max_5_axes_0"), val = tensor([-1])]; + bool reduce_max_5_keep_dims_0 = const()[name = string("reduce_max_5_keep_dims_0"), val = bool(true)]; + tensor reduce_max_5_cast_fp16 = reduce_max(axes = reduce_max_5_axes_0, keep_dims = reduce_max_5_keep_dims_0, x = x_161_cast_fp16)[name = string("reduce_max_5_cast_fp16")]; + tensor x_163_cast_fp16 = sub(x = x_161_cast_fp16, y = reduce_max_5_cast_fp16)[name = string("x_163_cast_fp16")]; + tensor exp_x_11_cast_fp16 = exp(x = x_163_cast_fp16)[name = string("exp_x_11_cast_fp16")]; + tensor var_1304_axes_0 = const()[name = string("op_1304_axes_0"), val = tensor([-1])]; + bool var_1304_keep_dims_0 = const()[name = string("op_1304_keep_dims_0"), val = bool(true)]; + tensor var_1304_cast_fp16 = reduce_sum(axes = var_1304_axes_0, keep_dims = var_1304_keep_dims_0, x = exp_x_11_cast_fp16)[name = string("op_1304_cast_fp16")]; + tensor attn_weights_23_cast_fp16 = real_div(x = exp_x_11_cast_fp16, y = var_1304_cast_fp16)[name = string("attn_weights_23_cast_fp16")]; + bool attn_output_31_transpose_x_0 = const()[name = string("attn_output_31_transpose_x_0"), val = bool(false)]; + bool attn_output_31_transpose_y_0 = const()[name = string("attn_output_31_transpose_y_0"), val = bool(false)]; + tensor attn_output_31_cast_fp16 = matmul(transpose_x = attn_output_31_transpose_x_0, transpose_y = attn_output_31_transpose_y_0, x = attn_weights_23_cast_fp16, y = value_states_23_cast_fp16)[name = string("attn_output_31_cast_fp16")]; + tensor var_1307_perm_0 = const()[name = string("op_1307_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1309 = const()[name = string("op_1309"), val = tensor([1, 1, 3072])]; + tensor var_1307_cast_fp16 = transpose(perm = var_1307_perm_0, x = attn_output_31_cast_fp16)[name = string("transpose_6")]; + tensor input_75_cast_fp16 = reshape(shape = var_1309, x = var_1307_cast_fp16)[name = string("input_75_cast_fp16")]; + tensor model_model_layers_26_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764951360))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774388608))))[name = string("model_model_layers_26_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_5_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_26_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_75_cast_fp16)[name = string("linear_5_cast_fp16")]; + tensor hidden_states_45_cast_fp16 = add(x = hidden_states_41_cast_fp16, y = linear_5_cast_fp16)[name = string("hidden_states_45_cast_fp16")]; + tensor mean_23_axes_0 = const()[name = string("mean_23_axes_0"), val = tensor([-1])]; + bool mean_23_keep_dims_0 = const()[name = string("mean_23_keep_dims_0"), val = bool(true)]; + tensor mean_23_cast_fp16 = reduce_mean(axes = mean_23_axes_0, keep_dims = mean_23_keep_dims_0, x = hidden_states_45_cast_fp16)[name = string("mean_23_cast_fp16")]; + tensor input_77_cast_fp16 = sub(x = hidden_states_45_cast_fp16, y = mean_23_cast_fp16)[name = string("input_77_cast_fp16")]; + tensor var_1320_axes_0 = const()[name = string("op_1320_axes_0"), val = tensor([-1])]; + tensor model_model_layers_26_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_26_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774585280)))]; + tensor var_1320_cast_fp16 = layer_norm(axes = var_1320_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_26_post_attention_layernorm_weight_to_fp16, x = input_77_cast_fp16)[name = string("op_1320_cast_fp16")]; + tensor var_1327 = const()[name = string("op_1327"), val = tensor([0, 2, 1])]; + tensor input_79_axes_0 = const()[name = string("input_79_axes_0"), val = tensor([2])]; + tensor var_1328 = transpose(perm = var_1327, x = var_1320_cast_fp16)[name = string("transpose_5")]; + tensor input_79 = expand_dims(axes = input_79_axes_0, x = var_1328)[name = string("input_79")]; + string input_81_pad_type_0 = const()[name = string("input_81_pad_type_0"), val = string("valid")]; + tensor input_81_strides_0 = const()[name = string("input_81_strides_0"), val = tensor([1, 1])]; + tensor input_81_pad_0 = const()[name = string("input_81_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_81_dilations_0 = const()[name = string("input_81_dilations_0"), val = tensor([1, 1])]; + int32 input_81_groups_0 = const()[name = string("input_81_groups_0"), val = int32(1)]; + tensor input_81 = conv(dilations = input_81_dilations_0, groups = input_81_groups_0, pad = input_81_pad_0, pad_type = input_81_pad_type_0, strides = input_81_strides_0, weight = model_model_layers_26_mlp_gate_proj_weight_palettized, x = input_79)[name = string("input_81")]; + string up_states_11_pad_type_0 = const()[name = string("up_states_11_pad_type_0"), val = string("valid")]; + tensor up_states_11_strides_0 = const()[name = string("up_states_11_strides_0"), val = tensor([1, 1])]; + tensor up_states_11_pad_0 = const()[name = string("up_states_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_11_dilations_0 = const()[name = string("up_states_11_dilations_0"), val = tensor([1, 1])]; + int32 up_states_11_groups_0 = const()[name = string("up_states_11_groups_0"), val = int32(1)]; + tensor up_states_11 = conv(dilations = up_states_11_dilations_0, groups = up_states_11_groups_0, pad = up_states_11_pad_0, pad_type = up_states_11_pad_type_0, strides = up_states_11_strides_0, weight = model_model_layers_26_mlp_up_proj_weight_palettized, x = input_79)[name = string("up_states_11")]; + tensor gate_states_11 = silu(x = input_81)[name = string("gate_states_11")]; + tensor input_83 = mul(x = gate_states_11, y = up_states_11)[name = string("input_83")]; + string hidden_states_47_pad_type_0 = const()[name = string("hidden_states_47_pad_type_0"), val = string("valid")]; + tensor hidden_states_47_strides_0 = const()[name = string("hidden_states_47_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_47_pad_0 = const()[name = string("hidden_states_47_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_47_dilations_0 = const()[name = string("hidden_states_47_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_47_groups_0 = const()[name = string("hidden_states_47_groups_0"), val = int32(1)]; + tensor hidden_states_47 = conv(dilations = hidden_states_47_dilations_0, groups = hidden_states_47_groups_0, pad = hidden_states_47_pad_0, pad_type = hidden_states_47_pad_type_0, strides = hidden_states_47_strides_0, weight = model_model_layers_26_mlp_down_proj_weight_palettized, x = input_83)[name = string("hidden_states_47")]; + tensor var_1350_axes_0 = const()[name = string("op_1350_axes_0"), val = tensor([2])]; + tensor var_1350 = squeeze(axes = var_1350_axes_0, x = hidden_states_47)[name = string("op_1350")]; + tensor var_1351 = const()[name = string("op_1351"), val = tensor([0, 2, 1])]; + tensor var_1352 = transpose(perm = var_1351, x = var_1350)[name = string("transpose_4")]; + tensor hidden_states_49_cast_fp16 = add(x = hidden_states_45_cast_fp16, y = var_1352)[name = string("hidden_states_49_cast_fp16")]; + tensor mean_25_axes_0 = const()[name = string("mean_25_axes_0"), val = tensor([-1])]; + bool mean_25_keep_dims_0 = const()[name = string("mean_25_keep_dims_0"), val = bool(true)]; + tensor mean_25_cast_fp16 = reduce_mean(axes = mean_25_axes_0, keep_dims = mean_25_keep_dims_0, x = hidden_states_49_cast_fp16)[name = string("mean_25_cast_fp16")]; + tensor input_85_cast_fp16 = sub(x = hidden_states_49_cast_fp16, y = mean_25_cast_fp16)[name = string("input_85_cast_fp16")]; + tensor var_1360_axes_0 = const()[name = string("op_1360_axes_0"), val = tensor([-1])]; + tensor model_model_layers_27_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_27_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774591488)))]; + tensor var_1360_cast_fp16 = layer_norm(axes = var_1360_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_27_input_layernorm_weight_to_fp16, x = input_85_cast_fp16)[name = string("op_1360_cast_fp16")]; + tensor var_1363 = const()[name = string("op_1363"), val = tensor([0, 2, 1])]; + tensor var_1365_axes_0 = const()[name = string("op_1365_axes_0"), val = tensor([2])]; + tensor var_1364 = transpose(perm = var_1363, x = var_1360_cast_fp16)[name = string("transpose_3")]; + tensor var_1365 = expand_dims(axes = var_1365_axes_0, x = var_1364)[name = string("op_1365")]; + string var_1372_pad_type_0 = const()[name = string("op_1372_pad_type_0"), val = string("valid")]; + tensor var_1372_strides_0 = const()[name = string("op_1372_strides_0"), val = tensor([1, 1])]; + tensor var_1372_pad_0 = const()[name = string("op_1372_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1372_dilations_0 = const()[name = string("op_1372_dilations_0"), val = tensor([1, 1])]; + int32 var_1372_groups_0 = const()[name = string("op_1372_groups_0"), val = int32(1)]; + tensor var_1372 = conv(dilations = var_1372_dilations_0, groups = var_1372_groups_0, pad = var_1372_pad_0, pad_type = var_1372_pad_type_0, strides = var_1372_strides_0, weight = model_model_layers_27_self_attn_q_proj_weight_palettized, x = var_1365)[name = string("op_1372")]; + tensor var_1373 = const()[name = string("op_1373"), val = tensor([1, 24, 1, 128])]; + tensor var_1374 = reshape(shape = var_1373, x = var_1372)[name = string("op_1374")]; + string var_1381_pad_type_0 = const()[name = string("op_1381_pad_type_0"), val = string("valid")]; + tensor var_1381_strides_0 = const()[name = string("op_1381_strides_0"), val = tensor([1, 1])]; + tensor var_1381_pad_0 = const()[name = string("op_1381_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1381_dilations_0 = const()[name = string("op_1381_dilations_0"), val = tensor([1, 1])]; + int32 var_1381_groups_0 = const()[name = string("op_1381_groups_0"), val = int32(1)]; + tensor var_1381 = conv(dilations = var_1381_dilations_0, groups = var_1381_groups_0, pad = var_1381_pad_0, pad_type = var_1381_pad_type_0, strides = var_1381_strides_0, weight = model_model_layers_27_self_attn_k_proj_weight_palettized, x = var_1365)[name = string("op_1381")]; + tensor var_1382 = const()[name = string("op_1382"), val = tensor([1, 8, 1, 128])]; + tensor var_1383 = reshape(shape = var_1382, x = var_1381)[name = string("op_1383")]; + string var_1390_pad_type_0 = const()[name = string("op_1390_pad_type_0"), val = string("valid")]; + tensor var_1390_strides_0 = const()[name = string("op_1390_strides_0"), val = tensor([1, 1])]; + tensor var_1390_pad_0 = const()[name = string("op_1390_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1390_dilations_0 = const()[name = string("op_1390_dilations_0"), val = tensor([1, 1])]; + int32 var_1390_groups_0 = const()[name = string("op_1390_groups_0"), val = int32(1)]; + tensor var_1390 = conv(dilations = var_1390_dilations_0, groups = var_1390_groups_0, pad = var_1390_pad_0, pad_type = var_1390_pad_type_0, strides = var_1390_strides_0, weight = model_model_layers_27_self_attn_v_proj_weight_palettized, x = var_1365)[name = string("op_1390")]; + tensor var_1391 = const()[name = string("op_1391"), val = tensor([1, 8, 1, 128])]; + tensor var_1392 = reshape(shape = var_1391, x = var_1390)[name = string("op_1392")]; + tensor x1_25_begin_0 = const()[name = string("x1_25_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_25_end_0 = const()[name = string("x1_25_end_0"), val = tensor([1, 24, 1, 64])]; + tensor x1_25_end_mask_0 = const()[name = string("x1_25_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_25 = slice_by_index(begin = x1_25_begin_0, end = x1_25_end_0, end_mask = x1_25_end_mask_0, x = var_1374)[name = string("x1_25")]; + tensor x2_25_begin_0 = const()[name = string("x2_25_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_25_end_0 = const()[name = string("x2_25_end_0"), val = tensor([1, 24, 1, 128])]; + tensor x2_25_end_mask_0 = const()[name = string("x2_25_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_25 = slice_by_index(begin = x2_25_begin_0, end = x2_25_end_0, end_mask = x2_25_end_mask_0, x = var_1374)[name = string("x2_25")]; + tensor var_1406_cast_fp16 = mul(x = x1_25, y = cos_3_cast_fp16)[name = string("op_1406_cast_fp16")]; + tensor var_1407_cast_fp16 = mul(x = x2_25, y = sin_3_cast_fp16)[name = string("op_1407_cast_fp16")]; + tensor var_1408_cast_fp16 = sub(x = var_1406_cast_fp16, y = var_1407_cast_fp16)[name = string("op_1408_cast_fp16")]; + tensor var_1409_cast_fp16 = mul(x = x2_25, y = cos_3_cast_fp16)[name = string("op_1409_cast_fp16")]; + tensor var_1410_cast_fp16 = mul(x = x1_25, y = sin_3_cast_fp16)[name = string("op_1410_cast_fp16")]; + tensor var_1411_cast_fp16 = add(x = var_1409_cast_fp16, y = var_1410_cast_fp16)[name = string("op_1411_cast_fp16")]; + bool rotated_25_interleave_0 = const()[name = string("rotated_25_interleave_0"), val = bool(false)]; + tensor rotated_25_cast_fp16 = concat(axis = var_51, interleave = rotated_25_interleave_0, values = (var_1408_cast_fp16, var_1411_cast_fp16))[name = string("rotated_25_cast_fp16")]; + tensor x1_begin_0 = const()[name = string("x1_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_end_0 = const()[name = string("x1_end_0"), val = tensor([1, 8, 1, 64])]; + tensor x1_end_mask_0 = const()[name = string("x1_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1 = slice_by_index(begin = x1_begin_0, end = x1_end_0, end_mask = x1_end_mask_0, x = var_1383)[name = string("x1")]; + tensor x2_begin_0 = const()[name = string("x2_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_end_0 = const()[name = string("x2_end_0"), val = tensor([1, 8, 1, 128])]; + tensor x2_end_mask_0 = const()[name = string("x2_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2 = slice_by_index(begin = x2_begin_0, end = x2_end_0, end_mask = x2_end_mask_0, x = var_1383)[name = string("x2")]; + tensor var_1427_cast_fp16 = mul(x = x1, y = cos_3_cast_fp16)[name = string("op_1427_cast_fp16")]; + tensor var_1428_cast_fp16 = mul(x = x2, y = sin_3_cast_fp16)[name = string("op_1428_cast_fp16")]; + tensor var_1429_cast_fp16 = sub(x = var_1427_cast_fp16, y = var_1428_cast_fp16)[name = string("op_1429_cast_fp16")]; + tensor var_1430_cast_fp16 = mul(x = x2, y = cos_3_cast_fp16)[name = string("op_1430_cast_fp16")]; + tensor var_1431_cast_fp16 = mul(x = x1, y = sin_3_cast_fp16)[name = string("op_1431_cast_fp16")]; + tensor var_1432_cast_fp16 = add(x = var_1430_cast_fp16, y = var_1431_cast_fp16)[name = string("op_1432_cast_fp16")]; + bool rotated_interleave_0 = const()[name = string("rotated_interleave_0"), val = bool(false)]; + tensor rotated_cast_fp16 = concat(axis = var_51, interleave = rotated_interleave_0, values = (var_1429_cast_fp16, var_1432_cast_fp16))[name = string("rotated_cast_fp16")]; + tensor expand_dims_72 = const()[name = string("expand_dims_72"), val = tensor([27])]; + tensor expand_dims_73 = const()[name = string("expand_dims_73"), val = tensor([0])]; + tensor expand_dims_75 = const()[name = string("expand_dims_75"), val = tensor([0])]; + tensor expand_dims_76 = const()[name = string("expand_dims_76"), val = tensor([28])]; + int32 concat_50_axis_0 = const()[name = string("concat_50_axis_0"), val = int32(0)]; + bool concat_50_interleave_0 = const()[name = string("concat_50_interleave_0"), val = bool(false)]; + tensor concat_50 = concat(axis = concat_50_axis_0, interleave = concat_50_interleave_0, values = (expand_dims_72, expand_dims_73, current_pos, expand_dims_75))[name = string("concat_50")]; + tensor concat_51_values1_0 = const()[name = string("concat_51_values1_0"), val = tensor([0])]; + tensor concat_51_values3_0 = const()[name = string("concat_51_values3_0"), val = tensor([0])]; + int32 concat_51_axis_0 = const()[name = string("concat_51_axis_0"), val = int32(0)]; + bool concat_51_interleave_0 = const()[name = string("concat_51_interleave_0"), val = bool(false)]; + tensor concat_51 = concat(axis = concat_51_axis_0, interleave = concat_51_interleave_0, values = (expand_dims_76, concat_51_values1_0, var_327, concat_51_values3_0))[name = string("concat_51")]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_cast_fp16 = slice_update(begin = concat_50, begin_mask = model_model_kv_cache_0_internal_tensor_assign_13_begin_mask_0, end = concat_51, end_mask = model_model_kv_cache_0_internal_tensor_assign_13_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_13_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_13_stride_0, update = rotated_cast_fp16, x = coreml_update_state_25)[name = string("model_model_kv_cache_0_internal_tensor_assign_13_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_13_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_12_write_state")]; + tensor coreml_update_state_26 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_12")]; + tensor expand_dims_78 = const()[name = string("expand_dims_78"), val = tensor([55])]; + tensor expand_dims_79 = const()[name = string("expand_dims_79"), val = tensor([0])]; + tensor expand_dims_81 = const()[name = string("expand_dims_81"), val = tensor([0])]; + tensor expand_dims_82 = const()[name = string("expand_dims_82"), val = tensor([56])]; + int32 concat_54_axis_0 = const()[name = string("concat_54_axis_0"), val = int32(0)]; + bool concat_54_interleave_0 = const()[name = string("concat_54_interleave_0"), val = bool(false)]; + tensor concat_54 = concat(axis = concat_54_axis_0, interleave = concat_54_interleave_0, values = (expand_dims_78, expand_dims_79, current_pos, expand_dims_81))[name = string("concat_54")]; + tensor concat_55_values1_0 = const()[name = string("concat_55_values1_0"), val = tensor([0])]; + tensor concat_55_values3_0 = const()[name = string("concat_55_values3_0"), val = tensor([0])]; + int32 concat_55_axis_0 = const()[name = string("concat_55_axis_0"), val = int32(0)]; + bool concat_55_interleave_0 = const()[name = string("concat_55_interleave_0"), val = bool(false)]; + tensor concat_55 = concat(axis = concat_55_axis_0, interleave = concat_55_interleave_0, values = (expand_dims_82, concat_55_values1_0, var_327, concat_55_values3_0))[name = string("concat_55")]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_cast_fp16 = slice_update(begin = concat_54, begin_mask = model_model_kv_cache_0_internal_tensor_assign_14_begin_mask_0, end = concat_55, end_mask = model_model_kv_cache_0_internal_tensor_assign_14_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_14_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_14_stride_0, update = var_1392, x = coreml_update_state_26)[name = string("model_model_kv_cache_0_internal_tensor_assign_14_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_14_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_13_write_state")]; + tensor coreml_update_state_27 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_13")]; + tensor var_1452_begin_0 = const()[name = string("op_1452_begin_0"), val = tensor([27, 0, 0, 0])]; + tensor var_1452_end_0 = const()[name = string("op_1452_end_0"), val = tensor([28, 8, 1024, 128])]; + tensor var_1452_end_mask_0 = const()[name = string("op_1452_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1452_cast_fp16 = slice_by_index(begin = var_1452_begin_0, end = var_1452_end_0, end_mask = var_1452_end_mask_0, x = coreml_update_state_27)[name = string("op_1452_cast_fp16")]; + tensor K_layer_cache_axes_0 = const()[name = string("K_layer_cache_axes_0"), val = tensor([0])]; + tensor K_layer_cache_cast_fp16 = squeeze(axes = K_layer_cache_axes_0, x = var_1452_cast_fp16)[name = string("K_layer_cache_cast_fp16")]; + tensor var_1454_begin_0 = const()[name = string("op_1454_begin_0"), val = tensor([55, 0, 0, 0])]; + tensor var_1454_end_0 = const()[name = string("op_1454_end_0"), val = tensor([1, 8, 1024, 128])]; + tensor var_1454_end_mask_0 = const()[name = string("op_1454_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1454_cast_fp16 = slice_by_index(begin = var_1454_begin_0, end = var_1454_end_0, end_mask = var_1454_end_mask_0, x = coreml_update_state_27)[name = string("op_1454_cast_fp16")]; + tensor V_layer_cache_axes_0 = const()[name = string("V_layer_cache_axes_0"), val = tensor([0])]; + tensor V_layer_cache_cast_fp16 = squeeze(axes = V_layer_cache_axes_0, x = var_1454_cast_fp16)[name = string("V_layer_cache_cast_fp16")]; + tensor x_179_axes_0 = const()[name = string("x_179_axes_0"), val = tensor([1])]; + tensor x_179_cast_fp16 = expand_dims(axes = x_179_axes_0, x = K_layer_cache_cast_fp16)[name = string("x_179_cast_fp16")]; + tensor var_1463 = const()[name = string("op_1463"), val = tensor([1, 3, 1, 1])]; + tensor x_181_cast_fp16 = tile(reps = var_1463, x = x_179_cast_fp16)[name = string("x_181_cast_fp16")]; + tensor var_1467 = const()[name = string("op_1467"), val = tensor([1, -1, 1024, 128])]; + tensor key_states_cast_fp16 = reshape(shape = var_1467, x = x_181_cast_fp16)[name = string("key_states_cast_fp16")]; + tensor x_185_axes_0 = const()[name = string("x_185_axes_0"), val = tensor([1])]; + tensor x_185_cast_fp16 = expand_dims(axes = x_185_axes_0, x = V_layer_cache_cast_fp16)[name = string("x_185_cast_fp16")]; + tensor var_1470 = const()[name = string("op_1470"), val = tensor([1, 3, 1, 1])]; + tensor x_187_cast_fp16 = tile(reps = var_1470, x = x_185_cast_fp16)[name = string("x_187_cast_fp16")]; + tensor var_1474 = const()[name = string("op_1474"), val = tensor([1, -1, 1024, 128])]; + tensor value_states_cast_fp16 = reshape(shape = var_1474, x = x_187_cast_fp16)[name = string("value_states_cast_fp16")]; + bool var_1477_transpose_x_1 = const()[name = string("op_1477_transpose_x_1"), val = bool(false)]; + bool var_1477_transpose_y_1 = const()[name = string("op_1477_transpose_y_1"), val = bool(true)]; + tensor var_1477_cast_fp16 = matmul(transpose_x = var_1477_transpose_x_1, transpose_y = var_1477_transpose_y_1, x = rotated_25_cast_fp16, y = key_states_cast_fp16)[name = string("op_1477_cast_fp16")]; + fp16 var_1478_to_fp16 = const()[name = string("op_1478_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_25_cast_fp16 = mul(x = var_1477_cast_fp16, y = var_1478_to_fp16)[name = string("attn_weights_25_cast_fp16")]; + tensor x_189_cast_fp16 = add(x = attn_weights_25_cast_fp16, y = causal_mask)[name = string("x_189_cast_fp16")]; + tensor reduce_max_6_axes_0 = const()[name = string("reduce_max_6_axes_0"), val = tensor([-1])]; + bool reduce_max_6_keep_dims_0 = const()[name = string("reduce_max_6_keep_dims_0"), val = bool(true)]; + tensor reduce_max_6_cast_fp16 = reduce_max(axes = reduce_max_6_axes_0, keep_dims = reduce_max_6_keep_dims_0, x = x_189_cast_fp16)[name = string("reduce_max_6_cast_fp16")]; + tensor x_191_cast_fp16 = sub(x = x_189_cast_fp16, y = reduce_max_6_cast_fp16)[name = string("x_191_cast_fp16")]; + tensor exp_x_cast_fp16 = exp(x = x_191_cast_fp16)[name = string("exp_x_cast_fp16")]; + tensor var_1489_axes_0 = const()[name = string("op_1489_axes_0"), val = tensor([-1])]; + bool var_1489_keep_dims_0 = const()[name = string("op_1489_keep_dims_0"), val = bool(true)]; + tensor var_1489_cast_fp16 = reduce_sum(axes = var_1489_axes_0, keep_dims = var_1489_keep_dims_0, x = exp_x_cast_fp16)[name = string("op_1489_cast_fp16")]; + tensor attn_weights_cast_fp16 = real_div(x = exp_x_cast_fp16, y = var_1489_cast_fp16)[name = string("attn_weights_cast_fp16")]; + bool attn_output_37_transpose_x_0 = const()[name = string("attn_output_37_transpose_x_0"), val = bool(false)]; + bool attn_output_37_transpose_y_0 = const()[name = string("attn_output_37_transpose_y_0"), val = bool(false)]; + tensor attn_output_37_cast_fp16 = matmul(transpose_x = attn_output_37_transpose_x_0, transpose_y = attn_output_37_transpose_y_0, x = attn_weights_cast_fp16, y = value_states_cast_fp16)[name = string("attn_output_37_cast_fp16")]; + tensor var_1492_perm_0 = const()[name = string("op_1492_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1494 = const()[name = string("op_1494"), val = tensor([1, 1, 3072])]; + tensor var_1492_cast_fp16 = transpose(perm = var_1492_perm_0, x = attn_output_37_cast_fp16)[name = string("transpose_2")]; + tensor input_89_cast_fp16 = reshape(shape = var_1494, x = var_1492_cast_fp16)[name = string("input_89_cast_fp16")]; + tensor model_model_layers_27_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774597696))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(784034944))))[name = string("model_model_layers_27_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_6_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_27_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_89_cast_fp16)[name = string("linear_6_cast_fp16")]; + tensor hidden_states_53_cast_fp16 = add(x = hidden_states_49_cast_fp16, y = linear_6_cast_fp16)[name = string("hidden_states_53_cast_fp16")]; + tensor mean_27_axes_0 = const()[name = string("mean_27_axes_0"), val = tensor([-1])]; + bool mean_27_keep_dims_0 = const()[name = string("mean_27_keep_dims_0"), val = bool(true)]; + tensor mean_27_cast_fp16 = reduce_mean(axes = mean_27_axes_0, keep_dims = mean_27_keep_dims_0, x = hidden_states_53_cast_fp16)[name = string("mean_27_cast_fp16")]; + tensor input_91_cast_fp16 = sub(x = hidden_states_53_cast_fp16, y = mean_27_cast_fp16)[name = string("input_91_cast_fp16")]; + tensor var_1505_axes_0 = const()[name = string("op_1505_axes_0"), val = tensor([-1])]; + tensor model_model_layers_27_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_27_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(784231616)))]; + tensor var_1505_cast_fp16 = layer_norm(axes = var_1505_axes_0, epsilon = var_46_to_fp16, gamma = model_model_layers_27_post_attention_layernorm_weight_to_fp16, x = input_91_cast_fp16)[name = string("op_1505_cast_fp16")]; + tensor var_1512 = const()[name = string("op_1512"), val = tensor([0, 2, 1])]; + tensor input_93_axes_0 = const()[name = string("input_93_axes_0"), val = tensor([2])]; + tensor var_1513 = transpose(perm = var_1512, x = var_1505_cast_fp16)[name = string("transpose_1")]; + tensor input_93 = expand_dims(axes = input_93_axes_0, x = var_1513)[name = string("input_93")]; + string input_95_pad_type_0 = const()[name = string("input_95_pad_type_0"), val = string("valid")]; + tensor input_95_strides_0 = const()[name = string("input_95_strides_0"), val = tensor([1, 1])]; + tensor input_95_pad_0 = const()[name = string("input_95_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_95_dilations_0 = const()[name = string("input_95_dilations_0"), val = tensor([1, 1])]; + int32 input_95_groups_0 = const()[name = string("input_95_groups_0"), val = int32(1)]; + tensor input_95 = conv(dilations = input_95_dilations_0, groups = input_95_groups_0, pad = input_95_pad_0, pad_type = input_95_pad_type_0, strides = input_95_strides_0, weight = model_model_layers_27_mlp_gate_proj_weight_palettized, x = input_93)[name = string("input_95")]; + string up_states_pad_type_0 = const()[name = string("up_states_pad_type_0"), val = string("valid")]; + tensor up_states_strides_0 = const()[name = string("up_states_strides_0"), val = tensor([1, 1])]; + tensor up_states_pad_0 = const()[name = string("up_states_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_dilations_0 = const()[name = string("up_states_dilations_0"), val = tensor([1, 1])]; + int32 up_states_groups_0 = const()[name = string("up_states_groups_0"), val = int32(1)]; + tensor up_states = conv(dilations = up_states_dilations_0, groups = up_states_groups_0, pad = up_states_pad_0, pad_type = up_states_pad_type_0, strides = up_states_strides_0, weight = model_model_layers_27_mlp_up_proj_weight_palettized, x = input_93)[name = string("up_states")]; + tensor gate_states = silu(x = input_95)[name = string("gate_states")]; + tensor input_97 = mul(x = gate_states, y = up_states)[name = string("input_97")]; + string hidden_states_55_pad_type_0 = const()[name = string("hidden_states_55_pad_type_0"), val = string("valid")]; + tensor hidden_states_55_strides_0 = const()[name = string("hidden_states_55_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_55_pad_0 = const()[name = string("hidden_states_55_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_55_dilations_0 = const()[name = string("hidden_states_55_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_55_groups_0 = const()[name = string("hidden_states_55_groups_0"), val = int32(1)]; + tensor hidden_states_55 = conv(dilations = hidden_states_55_dilations_0, groups = hidden_states_55_groups_0, pad = hidden_states_55_pad_0, pad_type = hidden_states_55_pad_type_0, strides = hidden_states_55_strides_0, weight = model_model_layers_27_mlp_down_proj_weight_palettized, x = input_97)[name = string("hidden_states_55")]; + tensor var_1535_axes_0 = const()[name = string("op_1535_axes_0"), val = tensor([2])]; + tensor var_1535 = squeeze(axes = var_1535_axes_0, x = hidden_states_55)[name = string("op_1535")]; + tensor var_1536 = const()[name = string("op_1536"), val = tensor([0, 2, 1])]; + tensor var_1537 = transpose(perm = var_1536, x = var_1535)[name = string("transpose_0")]; + tensor hidden_states_cast_fp16 = add(x = hidden_states_53_cast_fp16, y = var_1537)[name = string("hidden_states_cast_fp16")]; + tensor mean_axes_0 = const()[name = string("mean_axes_0"), val = tensor([-1])]; + bool mean_keep_dims_0 = const()[name = string("mean_keep_dims_0"), val = bool(true)]; + tensor mean_cast_fp16 = reduce_mean(axes = mean_axes_0, keep_dims = mean_keep_dims_0, x = hidden_states_cast_fp16)[name = string("mean_cast_fp16")]; + tensor input_cast_fp16 = sub(x = hidden_states_cast_fp16, y = mean_cast_fp16)[name = string("input_cast_fp16")]; + tensor var_1545_axes_0 = const()[name = string("op_1545_axes_0"), val = tensor([-1])]; + tensor model_model_norm_weight_to_fp16 = const()[name = string("model_model_norm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(784237824)))]; + tensor output_hidden_states = layer_norm(axes = var_1545_axes_0, epsilon = var_46_to_fp16, gamma = model_model_norm_weight_to_fp16, x = input_cast_fp16)[name = string("op_1545_cast_fp16")]; + tensor position_ids_tmp = identity(x = position_ids)[name = string("position_ids_tmp")]; + } -> (output_hidden_states); + func prefill(tensor causal_mask, tensor current_pos, tensor hidden_states, state> model_model_kv_cache_0, tensor position_ids) { + tensor model_model_layers_21_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9437312))))[name = string("model_model_layers_21_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_21_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9633984))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(12779776))))[name = string("model_model_layers_21_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_21_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(12845376))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(15991168))))[name = string("model_model_layers_21_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_21_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16056768))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41222656))))[name = string("model_model_layers_21_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_21_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41747008))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(66912896))))[name = string("model_model_layers_21_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_21_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(67437248))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92603136))))[name = string("model_model_layers_21_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_22_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92799808))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(102237056))))[name = string("model_model_layers_22_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_22_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(102433728))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(105579520))))[name = string("model_model_layers_22_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_22_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(105645120))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(108790912))))[name = string("model_model_layers_22_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_22_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(108856512))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(134022400))))[name = string("model_model_layers_22_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_22_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(134546752))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(159712640))))[name = string("model_model_layers_22_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_22_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(160236992))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(185402880))))[name = string("model_model_layers_22_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_23_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(185599552))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(195036800))))[name = string("model_model_layers_23_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_23_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(195233472))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(198379264))))[name = string("model_model_layers_23_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_23_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(198444864))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(201590656))))[name = string("model_model_layers_23_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_23_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(201656256))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(226822144))))[name = string("model_model_layers_23_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_23_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(227346496))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(252512384))))[name = string("model_model_layers_23_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_23_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(253036736))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278202624))))[name = string("model_model_layers_23_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_24_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278399296))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(287836544))))[name = string("model_model_layers_24_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_24_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(288033216))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291179008))))[name = string("model_model_layers_24_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_24_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291244608))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(294390400))))[name = string("model_model_layers_24_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_24_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(294456000))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(319621888))))[name = string("model_model_layers_24_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_24_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(320146240))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(345312128))))[name = string("model_model_layers_24_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_24_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(345836480))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(371002368))))[name = string("model_model_layers_24_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_25_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(371199040))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(380636288))))[name = string("model_model_layers_25_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_25_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(380832960))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(383978752))))[name = string("model_model_layers_25_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_25_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(384044352))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(387190144))))[name = string("model_model_layers_25_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_25_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(387255744))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(412421632))))[name = string("model_model_layers_25_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_25_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(412945984))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(438111872))))[name = string("model_model_layers_25_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_25_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(438636224))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(463802112))))[name = string("model_model_layers_25_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_26_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(463998784))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(473436032))))[name = string("model_model_layers_26_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_26_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(473632704))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(476778496))))[name = string("model_model_layers_26_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_26_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(476844096))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(479989888))))[name = string("model_model_layers_26_self_attn_v_proj_weight_palettized")]; + tensor model_model_layers_26_mlp_gate_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(480055488))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(505221376))))[name = string("model_model_layers_26_mlp_gate_proj_weight_palettized")]; + tensor model_model_layers_26_mlp_up_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(505745728))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(530911616))))[name = string("model_model_layers_26_mlp_up_proj_weight_palettized")]; + tensor model_model_layers_26_mlp_down_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(531435968))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(556601856))))[name = string("model_model_layers_26_mlp_down_proj_weight_palettized")]; + tensor model_model_layers_27_self_attn_q_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(556798528))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(566235776))))[name = string("model_model_layers_27_self_attn_q_proj_weight_palettized")]; + tensor model_model_layers_27_self_attn_k_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(566432448))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(569578240))))[name = string("model_model_layers_27_self_attn_k_proj_weight_palettized")]; + tensor model_model_layers_27_self_attn_v_proj_weight_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(569643840))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(572789632))))[name = string("model_model_layers_27_self_attn_v_proj_weight_palettized")]; + int32 var_46 = const()[name = string("op_46"), val = int32(-1)]; + int32 greater_equal_0_y_0 = const()[name = string("greater_equal_0_y_0"), val = int32(0)]; + tensor greater_equal_0 = greater_equal(x = position_ids, y = greater_equal_0_y_0)[name = string("greater_equal_0")]; + int32 slice_by_index_0 = const()[name = string("slice_by_index_0"), val = int32(131072)]; + tensor add_0 = add(x = position_ids, y = slice_by_index_0)[name = string("add_0")]; + tensor select_0 = select(a = position_ids, b = add_0, cond = greater_equal_0)[name = string("select_0")]; + int32 var_232_axis_0 = const()[name = string("op_232_axis_0"), val = int32(1)]; + int32 var_232_batch_dims_0 = const()[name = string("op_232_batch_dims_0"), val = int32(0)]; + bool var_232_validate_indices_0 = const()[name = string("op_232_validate_indices_0"), val = bool(false)]; + tensor var_57_to_fp16 = const()[name = string("op_57_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(683152768)))]; + tensor var_232_cast_fp16 = gather(axis = var_232_axis_0, batch_dims = var_232_batch_dims_0, indices = select_0, validate_indices = var_232_validate_indices_0, x = var_57_to_fp16)[name = string("op_232_cast_fp16")]; + tensor var_233 = const()[name = string("op_233"), val = tensor([1, 64, 1, 128])]; + tensor cos_1_cast_fp16 = reshape(shape = var_233, x = var_232_cast_fp16)[name = string("cos_1_cast_fp16")]; + int32 var_237_axis_0 = const()[name = string("op_237_axis_0"), val = int32(1)]; + int32 var_237_batch_dims_0 = const()[name = string("op_237_batch_dims_0"), val = int32(0)]; + bool var_237_validate_indices_0 = const()[name = string("op_237_validate_indices_0"), val = bool(false)]; + tensor var_52_to_fp16 = const()[name = string("op_52_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(649598272)))]; + tensor var_237_cast_fp16 = gather(axis = var_237_axis_0, batch_dims = var_237_batch_dims_0, indices = select_0, validate_indices = var_237_validate_indices_0, x = var_52_to_fp16)[name = string("op_237_cast_fp16")]; + tensor var_238 = const()[name = string("op_238"), val = tensor([1, 64, 1, 128])]; + tensor sin_1_cast_fp16 = reshape(shape = var_238, x = var_237_cast_fp16)[name = string("sin_1_cast_fp16")]; + tensor mean_1_axes_0 = const()[name = string("mean_1_axes_0"), val = tensor([-1])]; + bool mean_1_keep_dims_0 = const()[name = string("mean_1_keep_dims_0"), val = bool(true)]; + tensor mean_1_cast_fp16 = reduce_mean(axes = mean_1_axes_0, keep_dims = mean_1_keep_dims_0, x = hidden_states)[name = string("mean_1_cast_fp16")]; + tensor input_1_cast_fp16 = sub(x = hidden_states, y = mean_1_cast_fp16)[name = string("input_1_cast_fp16")]; + tensor var_248_axes_0 = const()[name = string("op_248_axes_0"), val = tensor([-1])]; + tensor model_model_layers_21_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_21_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(716707264)))]; + fp16 var_48_to_fp16 = const()[name = string("op_48_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_248_cast_fp16 = layer_norm(axes = var_248_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_21_input_layernorm_weight_to_fp16, x = input_1_cast_fp16)[name = string("op_248_cast_fp16")]; + tensor var_252 = const()[name = string("op_252"), val = tensor([0, 2, 1])]; + tensor var_254_axes_0 = const()[name = string("op_254_axes_0"), val = tensor([2])]; + tensor var_253 = transpose(perm = var_252, x = var_248_cast_fp16)[name = string("transpose_48")]; + tensor var_254 = expand_dims(axes = var_254_axes_0, x = var_253)[name = string("op_254")]; + string query_states_1_pad_type_0 = const()[name = string("query_states_1_pad_type_0"), val = string("valid")]; + tensor query_states_1_strides_0 = const()[name = string("query_states_1_strides_0"), val = tensor([1, 1])]; + tensor query_states_1_pad_0 = const()[name = string("query_states_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_1_dilations_0 = const()[name = string("query_states_1_dilations_0"), val = tensor([1, 1])]; + int32 query_states_1_groups_0 = const()[name = string("query_states_1_groups_0"), val = int32(1)]; + tensor query_states_1 = conv(dilations = query_states_1_dilations_0, groups = query_states_1_groups_0, pad = query_states_1_pad_0, pad_type = query_states_1_pad_type_0, strides = query_states_1_strides_0, weight = model_model_layers_21_self_attn_q_proj_weight_palettized, x = var_254)[name = string("query_states_1")]; + string key_states_1_pad_type_0 = const()[name = string("key_states_1_pad_type_0"), val = string("valid")]; + tensor key_states_1_strides_0 = const()[name = string("key_states_1_strides_0"), val = tensor([1, 1])]; + tensor key_states_1_pad_0 = const()[name = string("key_states_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_1_dilations_0 = const()[name = string("key_states_1_dilations_0"), val = tensor([1, 1])]; + int32 key_states_1_groups_0 = const()[name = string("key_states_1_groups_0"), val = int32(1)]; + tensor key_states_1 = conv(dilations = key_states_1_dilations_0, groups = key_states_1_groups_0, pad = key_states_1_pad_0, pad_type = key_states_1_pad_type_0, strides = key_states_1_strides_0, weight = model_model_layers_21_self_attn_k_proj_weight_palettized, x = var_254)[name = string("key_states_1")]; + string value_states_1_pad_type_0 = const()[name = string("value_states_1_pad_type_0"), val = string("valid")]; + tensor value_states_1_strides_0 = const()[name = string("value_states_1_strides_0"), val = tensor([1, 1])]; + tensor value_states_1_pad_0 = const()[name = string("value_states_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_1_dilations_0 = const()[name = string("value_states_1_dilations_0"), val = tensor([1, 1])]; + int32 value_states_1_groups_0 = const()[name = string("value_states_1_groups_0"), val = int32(1)]; + tensor value_states_1 = conv(dilations = value_states_1_dilations_0, groups = value_states_1_groups_0, pad = value_states_1_pad_0, pad_type = value_states_1_pad_type_0, strides = value_states_1_strides_0, weight = model_model_layers_21_self_attn_v_proj_weight_palettized, x = var_254)[name = string("value_states_1")]; + tensor var_274 = const()[name = string("op_274"), val = tensor([1, 24, 128, 64])]; + tensor var_275 = reshape(shape = var_274, x = query_states_1)[name = string("op_275")]; + tensor var_276 = const()[name = string("op_276"), val = tensor([0, 1, 3, 2])]; + tensor var_278 = const()[name = string("op_278"), val = tensor([1, 8, 128, 64])]; + tensor var_279 = reshape(shape = var_278, x = key_states_1)[name = string("op_279")]; + tensor var_280 = const()[name = string("op_280"), val = tensor([0, 1, 3, 2])]; + tensor var_282 = const()[name = string("op_282"), val = tensor([1, 8, 128, 64])]; + tensor var_283 = reshape(shape = var_282, x = value_states_1)[name = string("op_283")]; + tensor var_284 = const()[name = string("op_284"), val = tensor([0, 1, 3, 2])]; + tensor var_286 = const()[name = string("op_286"), val = tensor([0, 2, 1, 3])]; + tensor var_288 = const()[name = string("op_288"), val = tensor([0, 2, 1, 3])]; + tensor x1_1_begin_0 = const()[name = string("x1_1_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_1_end_0 = const()[name = string("x1_1_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_1_end_mask_0 = const()[name = string("x1_1_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_1 = transpose(perm = var_276, x = var_275)[name = string("transpose_47")]; + tensor x1_1 = slice_by_index(begin = x1_1_begin_0, end = x1_1_end_0, end_mask = x1_1_end_mask_0, x = x_1)[name = string("x1_1")]; + tensor x2_1_begin_0 = const()[name = string("x2_1_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_1_end_0 = const()[name = string("x2_1_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_1_end_mask_0 = const()[name = string("x2_1_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_1 = slice_by_index(begin = x2_1_begin_0, end = x2_1_end_0, end_mask = x2_1_end_mask_0, x = x_1)[name = string("x2_1")]; + tensor cos_7_begin_0 = const()[name = string("cos_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor cos_7_end_0 = const()[name = string("cos_7_end_0"), val = tensor([1, 1, 64, 64])]; + tensor cos_7_end_mask_0 = const()[name = string("cos_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor cos_5 = transpose(perm = var_286, x = cos_1_cast_fp16)[name = string("transpose_46")]; + tensor cos_7 = slice_by_index(begin = cos_7_begin_0, end = cos_7_end_0, end_mask = cos_7_end_mask_0, x = cos_5)[name = string("cos_7")]; + tensor sin_7_begin_0 = const()[name = string("sin_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor sin_7_end_0 = const()[name = string("sin_7_end_0"), val = tensor([1, 1, 64, 64])]; + tensor sin_7_end_mask_0 = const()[name = string("sin_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor sin_5 = transpose(perm = var_288, x = sin_1_cast_fp16)[name = string("transpose_45")]; + tensor sin_7 = slice_by_index(begin = sin_7_begin_0, end = sin_7_end_0, end_mask = sin_7_end_mask_0, x = sin_5)[name = string("sin_7")]; + tensor var_302 = mul(x = x1_1, y = cos_7)[name = string("op_302")]; + tensor var_303 = mul(x = x2_1, y = sin_7)[name = string("op_303")]; + tensor var_304 = sub(x = var_302, y = var_303)[name = string("op_304")]; + tensor var_305 = mul(x = x2_1, y = cos_7)[name = string("op_305")]; + tensor var_306 = mul(x = x1_1, y = sin_7)[name = string("op_306")]; + tensor var_307 = add(x = var_305, y = var_306)[name = string("op_307")]; + bool rotated_1_interleave_0 = const()[name = string("rotated_1_interleave_0"), val = bool(false)]; + tensor rotated_1 = concat(axis = var_46, interleave = rotated_1_interleave_0, values = (var_304, var_307))[name = string("rotated_1")]; + tensor x1_3_begin_0 = const()[name = string("x1_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_3_end_0 = const()[name = string("x1_3_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_3_end_mask_0 = const()[name = string("x1_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_5 = transpose(perm = var_280, x = var_279)[name = string("transpose_44")]; + tensor x1_3 = slice_by_index(begin = x1_3_begin_0, end = x1_3_end_0, end_mask = x1_3_end_mask_0, x = x_5)[name = string("x1_3")]; + tensor x2_3_begin_0 = const()[name = string("x2_3_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_3_end_0 = const()[name = string("x2_3_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_3_end_mask_0 = const()[name = string("x2_3_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_3 = slice_by_index(begin = x2_3_begin_0, end = x2_3_end_0, end_mask = x2_3_end_mask_0, x = x_5)[name = string("x2_3")]; + tensor var_323 = mul(x = x1_3, y = cos_7)[name = string("op_323")]; + tensor var_324 = mul(x = x2_3, y = sin_7)[name = string("op_324")]; + tensor var_325 = sub(x = var_323, y = var_324)[name = string("op_325")]; + tensor var_326 = mul(x = x2_3, y = cos_7)[name = string("op_326")]; + tensor var_327 = mul(x = x1_3, y = sin_7)[name = string("op_327")]; + tensor var_328 = add(x = var_326, y = var_327)[name = string("op_328")]; + bool rotated_3_interleave_0 = const()[name = string("rotated_3_interleave_0"), val = bool(false)]; + tensor rotated_3 = concat(axis = var_46, interleave = rotated_3_interleave_0, values = (var_325, var_328))[name = string("rotated_3")]; + tensor seq_length_1 = const()[name = string("seq_length_1"), val = tensor([64])]; + tensor var_337 = add(x = current_pos, y = seq_length_1)[name = string("op_337")]; + tensor read_state_0 = read_state(input = model_model_kv_cache_0)[name = string("read_state_0")]; + tensor expand_dims_0 = const()[name = string("expand_dims_0"), val = tensor([21])]; + tensor expand_dims_1 = const()[name = string("expand_dims_1"), val = tensor([0])]; + tensor expand_dims_3 = const()[name = string("expand_dims_3"), val = tensor([0])]; + tensor expand_dims_4 = const()[name = string("expand_dims_4"), val = tensor([22])]; + int32 concat_2_axis_0 = const()[name = string("concat_2_axis_0"), val = int32(0)]; + bool concat_2_interleave_0 = const()[name = string("concat_2_interleave_0"), val = bool(false)]; + tensor concat_2 = concat(axis = concat_2_axis_0, interleave = concat_2_interleave_0, values = (expand_dims_0, expand_dims_1, current_pos, expand_dims_3))[name = string("concat_2")]; + tensor concat_3_values1_0 = const()[name = string("concat_3_values1_0"), val = tensor([0])]; + tensor concat_3_values3_0 = const()[name = string("concat_3_values3_0"), val = tensor([0])]; + int32 concat_3_axis_0 = const()[name = string("concat_3_axis_0"), val = int32(0)]; + bool concat_3_interleave_0 = const()[name = string("concat_3_interleave_0"), val = bool(false)]; + tensor concat_3 = concat(axis = concat_3_axis_0, interleave = concat_3_interleave_0, values = (expand_dims_4, concat_3_values1_0, var_337, concat_3_values3_0))[name = string("concat_3")]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_1_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_2, begin_mask = model_model_kv_cache_0_internal_tensor_assign_1_begin_mask_0, end = concat_3, end_mask = model_model_kv_cache_0_internal_tensor_assign_1_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_1_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_1_stride_0, update = rotated_3, x = read_state_0)[name = string("model_model_kv_cache_0_internal_tensor_assign_1_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_1_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_14_write_state")]; + tensor coreml_update_state_14 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_14")]; + tensor expand_dims_6 = const()[name = string("expand_dims_6"), val = tensor([49])]; + tensor expand_dims_7 = const()[name = string("expand_dims_7"), val = tensor([0])]; + tensor expand_dims_9 = const()[name = string("expand_dims_9"), val = tensor([0])]; + tensor expand_dims_10 = const()[name = string("expand_dims_10"), val = tensor([50])]; + int32 concat_6_axis_0 = const()[name = string("concat_6_axis_0"), val = int32(0)]; + bool concat_6_interleave_0 = const()[name = string("concat_6_interleave_0"), val = bool(false)]; + tensor concat_6 = concat(axis = concat_6_axis_0, interleave = concat_6_interleave_0, values = (expand_dims_6, expand_dims_7, current_pos, expand_dims_9))[name = string("concat_6")]; + tensor concat_7_values1_0 = const()[name = string("concat_7_values1_0"), val = tensor([0])]; + tensor concat_7_values3_0 = const()[name = string("concat_7_values3_0"), val = tensor([0])]; + int32 concat_7_axis_0 = const()[name = string("concat_7_axis_0"), val = int32(0)]; + bool concat_7_interleave_0 = const()[name = string("concat_7_interleave_0"), val = bool(false)]; + tensor concat_7 = concat(axis = concat_7_axis_0, interleave = concat_7_interleave_0, values = (expand_dims_10, concat_7_values1_0, var_337, concat_7_values3_0))[name = string("concat_7")]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_2_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_3 = transpose(perm = var_284, x = var_283)[name = string("transpose_43")]; + tensor model_model_kv_cache_0_internal_tensor_assign_2_cast_fp16 = slice_update(begin = concat_6, begin_mask = model_model_kv_cache_0_internal_tensor_assign_2_begin_mask_0, end = concat_7, end_mask = model_model_kv_cache_0_internal_tensor_assign_2_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_2_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_2_stride_0, update = value_states_3, x = coreml_update_state_14)[name = string("model_model_kv_cache_0_internal_tensor_assign_2_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_2_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_15_write_state")]; + tensor coreml_update_state_15 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_15")]; + tensor var_351_begin_0 = const()[name = string("op_351_begin_0"), val = tensor([21, 0, 0, 0])]; + tensor var_351_end_0 = const()[name = string("op_351_end_0"), val = tensor([22, 8, 1024, 128])]; + tensor var_351_end_mask_0 = const()[name = string("op_351_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_351_cast_fp16 = slice_by_index(begin = var_351_begin_0, end = var_351_end_0, end_mask = var_351_end_mask_0, x = coreml_update_state_15)[name = string("op_351_cast_fp16")]; + tensor K_layer_cache_1_axes_0 = const()[name = string("K_layer_cache_1_axes_0"), val = tensor([0])]; + tensor K_layer_cache_1_cast_fp16 = squeeze(axes = K_layer_cache_1_axes_0, x = var_351_cast_fp16)[name = string("K_layer_cache_1_cast_fp16")]; + tensor var_353_begin_0 = const()[name = string("op_353_begin_0"), val = tensor([49, 0, 0, 0])]; + tensor var_353_end_0 = const()[name = string("op_353_end_0"), val = tensor([50, 8, 1024, 128])]; + tensor var_353_end_mask_0 = const()[name = string("op_353_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_353_cast_fp16 = slice_by_index(begin = var_353_begin_0, end = var_353_end_0, end_mask = var_353_end_mask_0, x = coreml_update_state_15)[name = string("op_353_cast_fp16")]; + tensor V_layer_cache_1_axes_0 = const()[name = string("V_layer_cache_1_axes_0"), val = tensor([0])]; + tensor V_layer_cache_1_cast_fp16 = squeeze(axes = V_layer_cache_1_axes_0, x = var_353_cast_fp16)[name = string("V_layer_cache_1_cast_fp16")]; + tensor x_11_axes_0 = const()[name = string("x_11_axes_0"), val = tensor([1])]; + tensor x_11_cast_fp16 = expand_dims(axes = x_11_axes_0, x = K_layer_cache_1_cast_fp16)[name = string("x_11_cast_fp16")]; + tensor var_362 = const()[name = string("op_362"), val = tensor([1, 3, 1, 1])]; + tensor x_13_cast_fp16 = tile(reps = var_362, x = x_11_cast_fp16)[name = string("x_13_cast_fp16")]; + tensor var_366 = const()[name = string("op_366"), val = tensor([1, -1, 1024, 128])]; + tensor var_367_cast_fp16 = reshape(shape = var_366, x = x_13_cast_fp16)[name = string("op_367_cast_fp16")]; + tensor x_17_axes_0 = const()[name = string("x_17_axes_0"), val = tensor([1])]; + tensor x_17_cast_fp16 = expand_dims(axes = x_17_axes_0, x = V_layer_cache_1_cast_fp16)[name = string("x_17_cast_fp16")]; + tensor var_369 = const()[name = string("op_369"), val = tensor([1, 3, 1, 1])]; + tensor x_19_cast_fp16 = tile(reps = var_369, x = x_17_cast_fp16)[name = string("x_19_cast_fp16")]; + bool var_376_transpose_x_0 = const()[name = string("op_376_transpose_x_0"), val = bool(false)]; + bool var_376_transpose_y_0 = const()[name = string("op_376_transpose_y_0"), val = bool(true)]; + tensor var_376_cast_fp16 = matmul(transpose_x = var_376_transpose_x_0, transpose_y = var_376_transpose_y_0, x = rotated_1, y = var_367_cast_fp16)[name = string("op_376_cast_fp16")]; + fp16 var_377_to_fp16 = const()[name = string("op_377_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_1_cast_fp16 = mul(x = var_376_cast_fp16, y = var_377_to_fp16)[name = string("attn_weights_1_cast_fp16")]; + tensor x_21_cast_fp16 = add(x = attn_weights_1_cast_fp16, y = causal_mask)[name = string("x_21_cast_fp16")]; + tensor reduce_max_0_axes_0 = const()[name = string("reduce_max_0_axes_0"), val = tensor([-1])]; + bool reduce_max_0_keep_dims_0 = const()[name = string("reduce_max_0_keep_dims_0"), val = bool(true)]; + tensor reduce_max_0_cast_fp16 = reduce_max(axes = reduce_max_0_axes_0, keep_dims = reduce_max_0_keep_dims_0, x = x_21_cast_fp16)[name = string("reduce_max_0_cast_fp16")]; + tensor x_23_cast_fp16 = sub(x = x_21_cast_fp16, y = reduce_max_0_cast_fp16)[name = string("x_23_cast_fp16")]; + tensor exp_x_1_cast_fp16 = exp(x = x_23_cast_fp16)[name = string("exp_x_1_cast_fp16")]; + tensor var_388_axes_0 = const()[name = string("op_388_axes_0"), val = tensor([-1])]; + bool var_388_keep_dims_0 = const()[name = string("op_388_keep_dims_0"), val = bool(true)]; + tensor var_388_cast_fp16 = reduce_sum(axes = var_388_axes_0, keep_dims = var_388_keep_dims_0, x = exp_x_1_cast_fp16)[name = string("op_388_cast_fp16")]; + tensor var_389_cast_fp16 = real_div(x = exp_x_1_cast_fp16, y = var_388_cast_fp16)[name = string("op_389_cast_fp16")]; + tensor concat_12 = const()[name = string("concat_12"), val = tensor([24, 64, 1024])]; + tensor reshape_0_cast_fp16 = reshape(shape = concat_12, x = var_389_cast_fp16)[name = string("reshape_0_cast_fp16")]; + tensor concat_13 = const()[name = string("concat_13"), val = tensor([24, 1024, 128])]; + tensor reshape_1_cast_fp16 = reshape(shape = concat_13, x = x_19_cast_fp16)[name = string("reshape_1_cast_fp16")]; + bool matmul_0_transpose_x_0 = const()[name = string("matmul_0_transpose_x_0"), val = bool(false)]; + bool matmul_0_transpose_y_0 = const()[name = string("matmul_0_transpose_y_0"), val = bool(false)]; + tensor matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = reshape_0_cast_fp16, y = reshape_1_cast_fp16)[name = string("matmul_0_cast_fp16")]; + tensor concat_17 = const()[name = string("concat_17"), val = tensor([1, 24, 64, 128])]; + tensor reshape_2_cast_fp16 = reshape(shape = concat_17, x = matmul_0_cast_fp16)[name = string("reshape_2_cast_fp16")]; + tensor var_392_perm_0 = const()[name = string("op_392_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_394 = const()[name = string("op_394"), val = tensor([1, 64, 3072])]; + tensor var_392_cast_fp16 = transpose(perm = var_392_perm_0, x = reshape_2_cast_fp16)[name = string("transpose_42")]; + tensor input_5_cast_fp16 = reshape(shape = var_394, x = var_392_cast_fp16)[name = string("input_5_cast_fp16")]; + tensor model_model_layers_21_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(716713472))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726150720))))[name = string("model_model_layers_21_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_0_bias_0_to_fp16 = const()[name = string("linear_0_bias_0_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726347392)))]; + tensor linear_0_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_21_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_5_cast_fp16)[name = string("linear_0_cast_fp16")]; + tensor hidden_states_5_cast_fp16 = add(x = hidden_states, y = linear_0_cast_fp16)[name = string("hidden_states_5_cast_fp16")]; + tensor mean_3_axes_0 = const()[name = string("mean_3_axes_0"), val = tensor([-1])]; + bool mean_3_keep_dims_0 = const()[name = string("mean_3_keep_dims_0"), val = bool(true)]; + tensor mean_3_cast_fp16 = reduce_mean(axes = mean_3_axes_0, keep_dims = mean_3_keep_dims_0, x = hidden_states_5_cast_fp16)[name = string("mean_3_cast_fp16")]; + tensor input_7_cast_fp16 = sub(x = hidden_states_5_cast_fp16, y = mean_3_cast_fp16)[name = string("input_7_cast_fp16")]; + tensor var_405_axes_0 = const()[name = string("op_405_axes_0"), val = tensor([-1])]; + tensor model_model_layers_21_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_21_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726353600)))]; + tensor var_405_cast_fp16 = layer_norm(axes = var_405_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_21_post_attention_layernorm_weight_to_fp16, x = input_7_cast_fp16)[name = string("op_405_cast_fp16")]; + tensor var_412 = const()[name = string("op_412"), val = tensor([0, 2, 1])]; + tensor input_9_axes_0 = const()[name = string("input_9_axes_0"), val = tensor([2])]; + tensor var_413 = transpose(perm = var_412, x = var_405_cast_fp16)[name = string("transpose_41")]; + tensor input_9 = expand_dims(axes = input_9_axes_0, x = var_413)[name = string("input_9")]; + string input_11_pad_type_0 = const()[name = string("input_11_pad_type_0"), val = string("valid")]; + tensor input_11_strides_0 = const()[name = string("input_11_strides_0"), val = tensor([1, 1])]; + tensor input_11_pad_0 = const()[name = string("input_11_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_11_dilations_0 = const()[name = string("input_11_dilations_0"), val = tensor([1, 1])]; + int32 input_11_groups_0 = const()[name = string("input_11_groups_0"), val = int32(1)]; + tensor input_11 = conv(dilations = input_11_dilations_0, groups = input_11_groups_0, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = input_11_strides_0, weight = model_model_layers_21_mlp_gate_proj_weight_palettized, x = input_9)[name = string("input_11")]; + string up_states_1_pad_type_0 = const()[name = string("up_states_1_pad_type_0"), val = string("valid")]; + tensor up_states_1_strides_0 = const()[name = string("up_states_1_strides_0"), val = tensor([1, 1])]; + tensor up_states_1_pad_0 = const()[name = string("up_states_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_1_dilations_0 = const()[name = string("up_states_1_dilations_0"), val = tensor([1, 1])]; + int32 up_states_1_groups_0 = const()[name = string("up_states_1_groups_0"), val = int32(1)]; + tensor up_states_1 = conv(dilations = up_states_1_dilations_0, groups = up_states_1_groups_0, pad = up_states_1_pad_0, pad_type = up_states_1_pad_type_0, strides = up_states_1_strides_0, weight = model_model_layers_21_mlp_up_proj_weight_palettized, x = input_9)[name = string("up_states_1")]; + tensor gate_states_1 = silu(x = input_11)[name = string("gate_states_1")]; + tensor input_13 = mul(x = gate_states_1, y = up_states_1)[name = string("input_13")]; + string hidden_states_7_pad_type_0 = const()[name = string("hidden_states_7_pad_type_0"), val = string("valid")]; + tensor hidden_states_7_strides_0 = const()[name = string("hidden_states_7_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_7_pad_0 = const()[name = string("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_7_dilations_0 = const()[name = string("hidden_states_7_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_7_groups_0 = const()[name = string("hidden_states_7_groups_0"), val = int32(1)]; + tensor hidden_states_7 = conv(dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = model_model_layers_21_mlp_down_proj_weight_palettized, x = input_13)[name = string("hidden_states_7")]; + tensor var_435_axes_0 = const()[name = string("op_435_axes_0"), val = tensor([2])]; + tensor var_435 = squeeze(axes = var_435_axes_0, x = hidden_states_7)[name = string("op_435")]; + tensor var_436 = const()[name = string("op_436"), val = tensor([0, 2, 1])]; + tensor var_437 = transpose(perm = var_436, x = var_435)[name = string("transpose_40")]; + tensor hidden_states_9_cast_fp16 = add(x = hidden_states_5_cast_fp16, y = var_437)[name = string("hidden_states_9_cast_fp16")]; + tensor mean_5_axes_0 = const()[name = string("mean_5_axes_0"), val = tensor([-1])]; + bool mean_5_keep_dims_0 = const()[name = string("mean_5_keep_dims_0"), val = bool(true)]; + tensor mean_5_cast_fp16 = reduce_mean(axes = mean_5_axes_0, keep_dims = mean_5_keep_dims_0, x = hidden_states_9_cast_fp16)[name = string("mean_5_cast_fp16")]; + tensor input_15_cast_fp16 = sub(x = hidden_states_9_cast_fp16, y = mean_5_cast_fp16)[name = string("input_15_cast_fp16")]; + tensor var_445_axes_0 = const()[name = string("op_445_axes_0"), val = tensor([-1])]; + tensor model_model_layers_22_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_22_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726359808)))]; + tensor var_445_cast_fp16 = layer_norm(axes = var_445_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_22_input_layernorm_weight_to_fp16, x = input_15_cast_fp16)[name = string("op_445_cast_fp16")]; + tensor var_449 = const()[name = string("op_449"), val = tensor([0, 2, 1])]; + tensor var_451_axes_0 = const()[name = string("op_451_axes_0"), val = tensor([2])]; + tensor var_450 = transpose(perm = var_449, x = var_445_cast_fp16)[name = string("transpose_39")]; + tensor var_451 = expand_dims(axes = var_451_axes_0, x = var_450)[name = string("op_451")]; + string query_states_5_pad_type_0 = const()[name = string("query_states_5_pad_type_0"), val = string("valid")]; + tensor query_states_5_strides_0 = const()[name = string("query_states_5_strides_0"), val = tensor([1, 1])]; + tensor query_states_5_pad_0 = const()[name = string("query_states_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_5_dilations_0 = const()[name = string("query_states_5_dilations_0"), val = tensor([1, 1])]; + int32 query_states_5_groups_0 = const()[name = string("query_states_5_groups_0"), val = int32(1)]; + tensor query_states_5 = conv(dilations = query_states_5_dilations_0, groups = query_states_5_groups_0, pad = query_states_5_pad_0, pad_type = query_states_5_pad_type_0, strides = query_states_5_strides_0, weight = model_model_layers_22_self_attn_q_proj_weight_palettized, x = var_451)[name = string("query_states_5")]; + string key_states_7_pad_type_0 = const()[name = string("key_states_7_pad_type_0"), val = string("valid")]; + tensor key_states_7_strides_0 = const()[name = string("key_states_7_strides_0"), val = tensor([1, 1])]; + tensor key_states_7_pad_0 = const()[name = string("key_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_7_dilations_0 = const()[name = string("key_states_7_dilations_0"), val = tensor([1, 1])]; + int32 key_states_7_groups_0 = const()[name = string("key_states_7_groups_0"), val = int32(1)]; + tensor key_states_7 = conv(dilations = key_states_7_dilations_0, groups = key_states_7_groups_0, pad = key_states_7_pad_0, pad_type = key_states_7_pad_type_0, strides = key_states_7_strides_0, weight = model_model_layers_22_self_attn_k_proj_weight_palettized, x = var_451)[name = string("key_states_7")]; + string value_states_7_pad_type_0 = const()[name = string("value_states_7_pad_type_0"), val = string("valid")]; + tensor value_states_7_strides_0 = const()[name = string("value_states_7_strides_0"), val = tensor([1, 1])]; + tensor value_states_7_pad_0 = const()[name = string("value_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_7_dilations_0 = const()[name = string("value_states_7_dilations_0"), val = tensor([1, 1])]; + int32 value_states_7_groups_0 = const()[name = string("value_states_7_groups_0"), val = int32(1)]; + tensor value_states_7 = conv(dilations = value_states_7_dilations_0, groups = value_states_7_groups_0, pad = value_states_7_pad_0, pad_type = value_states_7_pad_type_0, strides = value_states_7_strides_0, weight = model_model_layers_22_self_attn_v_proj_weight_palettized, x = var_451)[name = string("value_states_7")]; + tensor var_471 = const()[name = string("op_471"), val = tensor([1, 24, 128, 64])]; + tensor var_472 = reshape(shape = var_471, x = query_states_5)[name = string("op_472")]; + tensor var_473 = const()[name = string("op_473"), val = tensor([0, 1, 3, 2])]; + tensor var_475 = const()[name = string("op_475"), val = tensor([1, 8, 128, 64])]; + tensor var_476 = reshape(shape = var_475, x = key_states_7)[name = string("op_476")]; + tensor var_477 = const()[name = string("op_477"), val = tensor([0, 1, 3, 2])]; + tensor var_479 = const()[name = string("op_479"), val = tensor([1, 8, 128, 64])]; + tensor var_480 = reshape(shape = var_479, x = value_states_7)[name = string("op_480")]; + tensor var_481 = const()[name = string("op_481"), val = tensor([0, 1, 3, 2])]; + tensor x1_5_begin_0 = const()[name = string("x1_5_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_5_end_0 = const()[name = string("x1_5_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_5_end_mask_0 = const()[name = string("x1_5_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_29 = transpose(perm = var_473, x = var_472)[name = string("transpose_38")]; + tensor x1_5 = slice_by_index(begin = x1_5_begin_0, end = x1_5_end_0, end_mask = x1_5_end_mask_0, x = x_29)[name = string("x1_5")]; + tensor x2_5_begin_0 = const()[name = string("x2_5_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_5_end_0 = const()[name = string("x2_5_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_5_end_mask_0 = const()[name = string("x2_5_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_5 = slice_by_index(begin = x2_5_begin_0, end = x2_5_end_0, end_mask = x2_5_end_mask_0, x = x_29)[name = string("x2_5")]; + tensor var_499 = mul(x = x1_5, y = cos_7)[name = string("op_499")]; + tensor var_500 = mul(x = x2_5, y = sin_7)[name = string("op_500")]; + tensor var_501 = sub(x = var_499, y = var_500)[name = string("op_501")]; + tensor var_502 = mul(x = x2_5, y = cos_7)[name = string("op_502")]; + tensor var_503 = mul(x = x1_5, y = sin_7)[name = string("op_503")]; + tensor var_504 = add(x = var_502, y = var_503)[name = string("op_504")]; + bool rotated_5_interleave_0 = const()[name = string("rotated_5_interleave_0"), val = bool(false)]; + tensor rotated_5 = concat(axis = var_46, interleave = rotated_5_interleave_0, values = (var_501, var_504))[name = string("rotated_5")]; + tensor x1_7_begin_0 = const()[name = string("x1_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_7_end_0 = const()[name = string("x1_7_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_7_end_mask_0 = const()[name = string("x1_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_33 = transpose(perm = var_477, x = var_476)[name = string("transpose_37")]; + tensor x1_7 = slice_by_index(begin = x1_7_begin_0, end = x1_7_end_0, end_mask = x1_7_end_mask_0, x = x_33)[name = string("x1_7")]; + tensor x2_7_begin_0 = const()[name = string("x2_7_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_7_end_0 = const()[name = string("x2_7_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_7_end_mask_0 = const()[name = string("x2_7_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_7 = slice_by_index(begin = x2_7_begin_0, end = x2_7_end_0, end_mask = x2_7_end_mask_0, x = x_33)[name = string("x2_7")]; + tensor var_520 = mul(x = x1_7, y = cos_7)[name = string("op_520")]; + tensor var_521 = mul(x = x2_7, y = sin_7)[name = string("op_521")]; + tensor var_522 = sub(x = var_520, y = var_521)[name = string("op_522")]; + tensor var_523 = mul(x = x2_7, y = cos_7)[name = string("op_523")]; + tensor var_524 = mul(x = x1_7, y = sin_7)[name = string("op_524")]; + tensor var_525 = add(x = var_523, y = var_524)[name = string("op_525")]; + bool rotated_7_interleave_0 = const()[name = string("rotated_7_interleave_0"), val = bool(false)]; + tensor rotated_7 = concat(axis = var_46, interleave = rotated_7_interleave_0, values = (var_522, var_525))[name = string("rotated_7")]; + tensor expand_dims_12 = const()[name = string("expand_dims_12"), val = tensor([22])]; + tensor expand_dims_13 = const()[name = string("expand_dims_13"), val = tensor([0])]; + tensor expand_dims_15 = const()[name = string("expand_dims_15"), val = tensor([0])]; + tensor expand_dims_16 = const()[name = string("expand_dims_16"), val = tensor([23])]; + int32 concat_20_axis_0 = const()[name = string("concat_20_axis_0"), val = int32(0)]; + bool concat_20_interleave_0 = const()[name = string("concat_20_interleave_0"), val = bool(false)]; + tensor concat_20 = concat(axis = concat_20_axis_0, interleave = concat_20_interleave_0, values = (expand_dims_12, expand_dims_13, current_pos, expand_dims_15))[name = string("concat_20")]; + tensor concat_21_values1_0 = const()[name = string("concat_21_values1_0"), val = tensor([0])]; + tensor concat_21_values3_0 = const()[name = string("concat_21_values3_0"), val = tensor([0])]; + int32 concat_21_axis_0 = const()[name = string("concat_21_axis_0"), val = int32(0)]; + bool concat_21_interleave_0 = const()[name = string("concat_21_interleave_0"), val = bool(false)]; + tensor concat_21 = concat(axis = concat_21_axis_0, interleave = concat_21_interleave_0, values = (expand_dims_16, concat_21_values1_0, var_337, concat_21_values3_0))[name = string("concat_21")]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_3_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_3_cast_fp16 = slice_update(begin = concat_20, begin_mask = model_model_kv_cache_0_internal_tensor_assign_3_begin_mask_0, end = concat_21, end_mask = model_model_kv_cache_0_internal_tensor_assign_3_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_3_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_3_stride_0, update = rotated_7, x = coreml_update_state_15)[name = string("model_model_kv_cache_0_internal_tensor_assign_3_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_3_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_16_write_state")]; + tensor coreml_update_state_16 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_16")]; + tensor expand_dims_18 = const()[name = string("expand_dims_18"), val = tensor([50])]; + tensor expand_dims_19 = const()[name = string("expand_dims_19"), val = tensor([0])]; + tensor expand_dims_21 = const()[name = string("expand_dims_21"), val = tensor([0])]; + tensor expand_dims_22 = const()[name = string("expand_dims_22"), val = tensor([51])]; + int32 concat_24_axis_0 = const()[name = string("concat_24_axis_0"), val = int32(0)]; + bool concat_24_interleave_0 = const()[name = string("concat_24_interleave_0"), val = bool(false)]; + tensor concat_24 = concat(axis = concat_24_axis_0, interleave = concat_24_interleave_0, values = (expand_dims_18, expand_dims_19, current_pos, expand_dims_21))[name = string("concat_24")]; + tensor concat_25_values1_0 = const()[name = string("concat_25_values1_0"), val = tensor([0])]; + tensor concat_25_values3_0 = const()[name = string("concat_25_values3_0"), val = tensor([0])]; + int32 concat_25_axis_0 = const()[name = string("concat_25_axis_0"), val = int32(0)]; + bool concat_25_interleave_0 = const()[name = string("concat_25_interleave_0"), val = bool(false)]; + tensor concat_25 = concat(axis = concat_25_axis_0, interleave = concat_25_interleave_0, values = (expand_dims_22, concat_25_values1_0, var_337, concat_25_values3_0))[name = string("concat_25")]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_4_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_9 = transpose(perm = var_481, x = var_480)[name = string("transpose_36")]; + tensor model_model_kv_cache_0_internal_tensor_assign_4_cast_fp16 = slice_update(begin = concat_24, begin_mask = model_model_kv_cache_0_internal_tensor_assign_4_begin_mask_0, end = concat_25, end_mask = model_model_kv_cache_0_internal_tensor_assign_4_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_4_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_4_stride_0, update = value_states_9, x = coreml_update_state_16)[name = string("model_model_kv_cache_0_internal_tensor_assign_4_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_4_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_17_write_state")]; + tensor coreml_update_state_17 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_17")]; + tensor var_548_begin_0 = const()[name = string("op_548_begin_0"), val = tensor([22, 0, 0, 0])]; + tensor var_548_end_0 = const()[name = string("op_548_end_0"), val = tensor([23, 8, 1024, 128])]; + tensor var_548_end_mask_0 = const()[name = string("op_548_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_548_cast_fp16 = slice_by_index(begin = var_548_begin_0, end = var_548_end_0, end_mask = var_548_end_mask_0, x = coreml_update_state_17)[name = string("op_548_cast_fp16")]; + tensor K_layer_cache_3_axes_0 = const()[name = string("K_layer_cache_3_axes_0"), val = tensor([0])]; + tensor K_layer_cache_3_cast_fp16 = squeeze(axes = K_layer_cache_3_axes_0, x = var_548_cast_fp16)[name = string("K_layer_cache_3_cast_fp16")]; + tensor var_550_begin_0 = const()[name = string("op_550_begin_0"), val = tensor([50, 0, 0, 0])]; + tensor var_550_end_0 = const()[name = string("op_550_end_0"), val = tensor([51, 8, 1024, 128])]; + tensor var_550_end_mask_0 = const()[name = string("op_550_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_550_cast_fp16 = slice_by_index(begin = var_550_begin_0, end = var_550_end_0, end_mask = var_550_end_mask_0, x = coreml_update_state_17)[name = string("op_550_cast_fp16")]; + tensor V_layer_cache_3_axes_0 = const()[name = string("V_layer_cache_3_axes_0"), val = tensor([0])]; + tensor V_layer_cache_3_cast_fp16 = squeeze(axes = V_layer_cache_3_axes_0, x = var_550_cast_fp16)[name = string("V_layer_cache_3_cast_fp16")]; + tensor x_39_axes_0 = const()[name = string("x_39_axes_0"), val = tensor([1])]; + tensor x_39_cast_fp16 = expand_dims(axes = x_39_axes_0, x = K_layer_cache_3_cast_fp16)[name = string("x_39_cast_fp16")]; + tensor var_559 = const()[name = string("op_559"), val = tensor([1, 3, 1, 1])]; + tensor x_41_cast_fp16 = tile(reps = var_559, x = x_39_cast_fp16)[name = string("x_41_cast_fp16")]; + tensor var_563 = const()[name = string("op_563"), val = tensor([1, -1, 1024, 128])]; + tensor var_564_cast_fp16 = reshape(shape = var_563, x = x_41_cast_fp16)[name = string("op_564_cast_fp16")]; + tensor x_45_axes_0 = const()[name = string("x_45_axes_0"), val = tensor([1])]; + tensor x_45_cast_fp16 = expand_dims(axes = x_45_axes_0, x = V_layer_cache_3_cast_fp16)[name = string("x_45_cast_fp16")]; + tensor var_566 = const()[name = string("op_566"), val = tensor([1, 3, 1, 1])]; + tensor x_47_cast_fp16 = tile(reps = var_566, x = x_45_cast_fp16)[name = string("x_47_cast_fp16")]; + bool var_573_transpose_x_0 = const()[name = string("op_573_transpose_x_0"), val = bool(false)]; + bool var_573_transpose_y_0 = const()[name = string("op_573_transpose_y_0"), val = bool(true)]; + tensor var_573_cast_fp16 = matmul(transpose_x = var_573_transpose_x_0, transpose_y = var_573_transpose_y_0, x = rotated_5, y = var_564_cast_fp16)[name = string("op_573_cast_fp16")]; + fp16 var_574_to_fp16 = const()[name = string("op_574_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_3_cast_fp16 = mul(x = var_573_cast_fp16, y = var_574_to_fp16)[name = string("attn_weights_3_cast_fp16")]; + tensor x_49_cast_fp16 = add(x = attn_weights_3_cast_fp16, y = causal_mask)[name = string("x_49_cast_fp16")]; + tensor reduce_max_1_axes_0 = const()[name = string("reduce_max_1_axes_0"), val = tensor([-1])]; + bool reduce_max_1_keep_dims_0 = const()[name = string("reduce_max_1_keep_dims_0"), val = bool(true)]; + tensor reduce_max_1_cast_fp16 = reduce_max(axes = reduce_max_1_axes_0, keep_dims = reduce_max_1_keep_dims_0, x = x_49_cast_fp16)[name = string("reduce_max_1_cast_fp16")]; + tensor x_51_cast_fp16 = sub(x = x_49_cast_fp16, y = reduce_max_1_cast_fp16)[name = string("x_51_cast_fp16")]; + tensor exp_x_3_cast_fp16 = exp(x = x_51_cast_fp16)[name = string("exp_x_3_cast_fp16")]; + tensor var_585_axes_0 = const()[name = string("op_585_axes_0"), val = tensor([-1])]; + bool var_585_keep_dims_0 = const()[name = string("op_585_keep_dims_0"), val = bool(true)]; + tensor var_585_cast_fp16 = reduce_sum(axes = var_585_axes_0, keep_dims = var_585_keep_dims_0, x = exp_x_3_cast_fp16)[name = string("op_585_cast_fp16")]; + tensor var_586_cast_fp16 = real_div(x = exp_x_3_cast_fp16, y = var_585_cast_fp16)[name = string("op_586_cast_fp16")]; + tensor concat_30 = const()[name = string("concat_30"), val = tensor([24, 64, 1024])]; + tensor reshape_3_cast_fp16 = reshape(shape = concat_30, x = var_586_cast_fp16)[name = string("reshape_3_cast_fp16")]; + tensor concat_31 = const()[name = string("concat_31"), val = tensor([24, 1024, 128])]; + tensor reshape_4_cast_fp16 = reshape(shape = concat_31, x = x_47_cast_fp16)[name = string("reshape_4_cast_fp16")]; + bool matmul_1_transpose_x_0 = const()[name = string("matmul_1_transpose_x_0"), val = bool(false)]; + bool matmul_1_transpose_y_0 = const()[name = string("matmul_1_transpose_y_0"), val = bool(false)]; + tensor matmul_1_cast_fp16 = matmul(transpose_x = matmul_1_transpose_x_0, transpose_y = matmul_1_transpose_y_0, x = reshape_3_cast_fp16, y = reshape_4_cast_fp16)[name = string("matmul_1_cast_fp16")]; + tensor concat_35 = const()[name = string("concat_35"), val = tensor([1, 24, 64, 128])]; + tensor reshape_5_cast_fp16 = reshape(shape = concat_35, x = matmul_1_cast_fp16)[name = string("reshape_5_cast_fp16")]; + tensor var_589_perm_0 = const()[name = string("op_589_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_591 = const()[name = string("op_591"), val = tensor([1, 64, 3072])]; + tensor var_589_cast_fp16 = transpose(perm = var_589_perm_0, x = reshape_5_cast_fp16)[name = string("transpose_35")]; + tensor input_19_cast_fp16 = reshape(shape = var_591, x = var_589_cast_fp16)[name = string("input_19_cast_fp16")]; + tensor model_model_layers_22_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(726366016))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(735803264))))[name = string("model_model_layers_22_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_1_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_22_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_19_cast_fp16)[name = string("linear_1_cast_fp16")]; + tensor hidden_states_13_cast_fp16 = add(x = hidden_states_9_cast_fp16, y = linear_1_cast_fp16)[name = string("hidden_states_13_cast_fp16")]; + tensor mean_7_axes_0 = const()[name = string("mean_7_axes_0"), val = tensor([-1])]; + bool mean_7_keep_dims_0 = const()[name = string("mean_7_keep_dims_0"), val = bool(true)]; + tensor mean_7_cast_fp16 = reduce_mean(axes = mean_7_axes_0, keep_dims = mean_7_keep_dims_0, x = hidden_states_13_cast_fp16)[name = string("mean_7_cast_fp16")]; + tensor input_21_cast_fp16 = sub(x = hidden_states_13_cast_fp16, y = mean_7_cast_fp16)[name = string("input_21_cast_fp16")]; + tensor var_602_axes_0 = const()[name = string("op_602_axes_0"), val = tensor([-1])]; + tensor model_model_layers_22_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_22_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(735999936)))]; + tensor var_602_cast_fp16 = layer_norm(axes = var_602_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_22_post_attention_layernorm_weight_to_fp16, x = input_21_cast_fp16)[name = string("op_602_cast_fp16")]; + tensor var_609 = const()[name = string("op_609"), val = tensor([0, 2, 1])]; + tensor input_23_axes_0 = const()[name = string("input_23_axes_0"), val = tensor([2])]; + tensor var_610 = transpose(perm = var_609, x = var_602_cast_fp16)[name = string("transpose_34")]; + tensor input_23 = expand_dims(axes = input_23_axes_0, x = var_610)[name = string("input_23")]; + string input_25_pad_type_0 = const()[name = string("input_25_pad_type_0"), val = string("valid")]; + tensor input_25_strides_0 = const()[name = string("input_25_strides_0"), val = tensor([1, 1])]; + tensor input_25_pad_0 = const()[name = string("input_25_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_25_dilations_0 = const()[name = string("input_25_dilations_0"), val = tensor([1, 1])]; + int32 input_25_groups_0 = const()[name = string("input_25_groups_0"), val = int32(1)]; + tensor input_25 = conv(dilations = input_25_dilations_0, groups = input_25_groups_0, pad = input_25_pad_0, pad_type = input_25_pad_type_0, strides = input_25_strides_0, weight = model_model_layers_22_mlp_gate_proj_weight_palettized, x = input_23)[name = string("input_25")]; + string up_states_3_pad_type_0 = const()[name = string("up_states_3_pad_type_0"), val = string("valid")]; + tensor up_states_3_strides_0 = const()[name = string("up_states_3_strides_0"), val = tensor([1, 1])]; + tensor up_states_3_pad_0 = const()[name = string("up_states_3_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_3_dilations_0 = const()[name = string("up_states_3_dilations_0"), val = tensor([1, 1])]; + int32 up_states_3_groups_0 = const()[name = string("up_states_3_groups_0"), val = int32(1)]; + tensor up_states_3 = conv(dilations = up_states_3_dilations_0, groups = up_states_3_groups_0, pad = up_states_3_pad_0, pad_type = up_states_3_pad_type_0, strides = up_states_3_strides_0, weight = model_model_layers_22_mlp_up_proj_weight_palettized, x = input_23)[name = string("up_states_3")]; + tensor gate_states_3 = silu(x = input_25)[name = string("gate_states_3")]; + tensor input_27 = mul(x = gate_states_3, y = up_states_3)[name = string("input_27")]; + string hidden_states_15_pad_type_0 = const()[name = string("hidden_states_15_pad_type_0"), val = string("valid")]; + tensor hidden_states_15_strides_0 = const()[name = string("hidden_states_15_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_15_pad_0 = const()[name = string("hidden_states_15_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_15_dilations_0 = const()[name = string("hidden_states_15_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_15_groups_0 = const()[name = string("hidden_states_15_groups_0"), val = int32(1)]; + tensor hidden_states_15 = conv(dilations = hidden_states_15_dilations_0, groups = hidden_states_15_groups_0, pad = hidden_states_15_pad_0, pad_type = hidden_states_15_pad_type_0, strides = hidden_states_15_strides_0, weight = model_model_layers_22_mlp_down_proj_weight_palettized, x = input_27)[name = string("hidden_states_15")]; + tensor var_632_axes_0 = const()[name = string("op_632_axes_0"), val = tensor([2])]; + tensor var_632 = squeeze(axes = var_632_axes_0, x = hidden_states_15)[name = string("op_632")]; + tensor var_633 = const()[name = string("op_633"), val = tensor([0, 2, 1])]; + tensor var_634 = transpose(perm = var_633, x = var_632)[name = string("transpose_33")]; + tensor hidden_states_17_cast_fp16 = add(x = hidden_states_13_cast_fp16, y = var_634)[name = string("hidden_states_17_cast_fp16")]; + tensor mean_9_axes_0 = const()[name = string("mean_9_axes_0"), val = tensor([-1])]; + bool mean_9_keep_dims_0 = const()[name = string("mean_9_keep_dims_0"), val = bool(true)]; + tensor mean_9_cast_fp16 = reduce_mean(axes = mean_9_axes_0, keep_dims = mean_9_keep_dims_0, x = hidden_states_17_cast_fp16)[name = string("mean_9_cast_fp16")]; + tensor input_29_cast_fp16 = sub(x = hidden_states_17_cast_fp16, y = mean_9_cast_fp16)[name = string("input_29_cast_fp16")]; + tensor var_642_axes_0 = const()[name = string("op_642_axes_0"), val = tensor([-1])]; + tensor model_model_layers_23_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_23_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(736006144)))]; + tensor var_642_cast_fp16 = layer_norm(axes = var_642_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_23_input_layernorm_weight_to_fp16, x = input_29_cast_fp16)[name = string("op_642_cast_fp16")]; + tensor var_646 = const()[name = string("op_646"), val = tensor([0, 2, 1])]; + tensor var_648_axes_0 = const()[name = string("op_648_axes_0"), val = tensor([2])]; + tensor var_647 = transpose(perm = var_646, x = var_642_cast_fp16)[name = string("transpose_32")]; + tensor var_648 = expand_dims(axes = var_648_axes_0, x = var_647)[name = string("op_648")]; + string query_states_9_pad_type_0 = const()[name = string("query_states_9_pad_type_0"), val = string("valid")]; + tensor query_states_9_strides_0 = const()[name = string("query_states_9_strides_0"), val = tensor([1, 1])]; + tensor query_states_9_pad_0 = const()[name = string("query_states_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_9_dilations_0 = const()[name = string("query_states_9_dilations_0"), val = tensor([1, 1])]; + int32 query_states_9_groups_0 = const()[name = string("query_states_9_groups_0"), val = int32(1)]; + tensor query_states_9 = conv(dilations = query_states_9_dilations_0, groups = query_states_9_groups_0, pad = query_states_9_pad_0, pad_type = query_states_9_pad_type_0, strides = query_states_9_strides_0, weight = model_model_layers_23_self_attn_q_proj_weight_palettized, x = var_648)[name = string("query_states_9")]; + string key_states_13_pad_type_0 = const()[name = string("key_states_13_pad_type_0"), val = string("valid")]; + tensor key_states_13_strides_0 = const()[name = string("key_states_13_strides_0"), val = tensor([1, 1])]; + tensor key_states_13_pad_0 = const()[name = string("key_states_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_13_dilations_0 = const()[name = string("key_states_13_dilations_0"), val = tensor([1, 1])]; + int32 key_states_13_groups_0 = const()[name = string("key_states_13_groups_0"), val = int32(1)]; + tensor key_states_13 = conv(dilations = key_states_13_dilations_0, groups = key_states_13_groups_0, pad = key_states_13_pad_0, pad_type = key_states_13_pad_type_0, strides = key_states_13_strides_0, weight = model_model_layers_23_self_attn_k_proj_weight_palettized, x = var_648)[name = string("key_states_13")]; + string value_states_13_pad_type_0 = const()[name = string("value_states_13_pad_type_0"), val = string("valid")]; + tensor value_states_13_strides_0 = const()[name = string("value_states_13_strides_0"), val = tensor([1, 1])]; + tensor value_states_13_pad_0 = const()[name = string("value_states_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_13_dilations_0 = const()[name = string("value_states_13_dilations_0"), val = tensor([1, 1])]; + int32 value_states_13_groups_0 = const()[name = string("value_states_13_groups_0"), val = int32(1)]; + tensor value_states_13 = conv(dilations = value_states_13_dilations_0, groups = value_states_13_groups_0, pad = value_states_13_pad_0, pad_type = value_states_13_pad_type_0, strides = value_states_13_strides_0, weight = model_model_layers_23_self_attn_v_proj_weight_palettized, x = var_648)[name = string("value_states_13")]; + tensor var_668 = const()[name = string("op_668"), val = tensor([1, 24, 128, 64])]; + tensor var_669 = reshape(shape = var_668, x = query_states_9)[name = string("op_669")]; + tensor var_670 = const()[name = string("op_670"), val = tensor([0, 1, 3, 2])]; + tensor var_672 = const()[name = string("op_672"), val = tensor([1, 8, 128, 64])]; + tensor var_673 = reshape(shape = var_672, x = key_states_13)[name = string("op_673")]; + tensor var_674 = const()[name = string("op_674"), val = tensor([0, 1, 3, 2])]; + tensor var_676 = const()[name = string("op_676"), val = tensor([1, 8, 128, 64])]; + tensor var_677 = reshape(shape = var_676, x = value_states_13)[name = string("op_677")]; + tensor var_678 = const()[name = string("op_678"), val = tensor([0, 1, 3, 2])]; + tensor x1_9_begin_0 = const()[name = string("x1_9_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_9_end_0 = const()[name = string("x1_9_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_9_end_mask_0 = const()[name = string("x1_9_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_57 = transpose(perm = var_670, x = var_669)[name = string("transpose_31")]; + tensor x1_9 = slice_by_index(begin = x1_9_begin_0, end = x1_9_end_0, end_mask = x1_9_end_mask_0, x = x_57)[name = string("x1_9")]; + tensor x2_9_begin_0 = const()[name = string("x2_9_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_9_end_0 = const()[name = string("x2_9_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_9_end_mask_0 = const()[name = string("x2_9_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_9 = slice_by_index(begin = x2_9_begin_0, end = x2_9_end_0, end_mask = x2_9_end_mask_0, x = x_57)[name = string("x2_9")]; + tensor var_696 = mul(x = x1_9, y = cos_7)[name = string("op_696")]; + tensor var_697 = mul(x = x2_9, y = sin_7)[name = string("op_697")]; + tensor var_698 = sub(x = var_696, y = var_697)[name = string("op_698")]; + tensor var_699 = mul(x = x2_9, y = cos_7)[name = string("op_699")]; + tensor var_700 = mul(x = x1_9, y = sin_7)[name = string("op_700")]; + tensor var_701 = add(x = var_699, y = var_700)[name = string("op_701")]; + bool rotated_9_interleave_0 = const()[name = string("rotated_9_interleave_0"), val = bool(false)]; + tensor rotated_9 = concat(axis = var_46, interleave = rotated_9_interleave_0, values = (var_698, var_701))[name = string("rotated_9")]; + tensor x1_11_begin_0 = const()[name = string("x1_11_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_11_end_0 = const()[name = string("x1_11_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_11_end_mask_0 = const()[name = string("x1_11_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_61 = transpose(perm = var_674, x = var_673)[name = string("transpose_30")]; + tensor x1_11 = slice_by_index(begin = x1_11_begin_0, end = x1_11_end_0, end_mask = x1_11_end_mask_0, x = x_61)[name = string("x1_11")]; + tensor x2_11_begin_0 = const()[name = string("x2_11_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_11_end_0 = const()[name = string("x2_11_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_11_end_mask_0 = const()[name = string("x2_11_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_11 = slice_by_index(begin = x2_11_begin_0, end = x2_11_end_0, end_mask = x2_11_end_mask_0, x = x_61)[name = string("x2_11")]; + tensor var_717 = mul(x = x1_11, y = cos_7)[name = string("op_717")]; + tensor var_718 = mul(x = x2_11, y = sin_7)[name = string("op_718")]; + tensor var_719 = sub(x = var_717, y = var_718)[name = string("op_719")]; + tensor var_720 = mul(x = x2_11, y = cos_7)[name = string("op_720")]; + tensor var_721 = mul(x = x1_11, y = sin_7)[name = string("op_721")]; + tensor var_722 = add(x = var_720, y = var_721)[name = string("op_722")]; + bool rotated_11_interleave_0 = const()[name = string("rotated_11_interleave_0"), val = bool(false)]; + tensor rotated_11 = concat(axis = var_46, interleave = rotated_11_interleave_0, values = (var_719, var_722))[name = string("rotated_11")]; + tensor expand_dims_24 = const()[name = string("expand_dims_24"), val = tensor([23])]; + tensor expand_dims_25 = const()[name = string("expand_dims_25"), val = tensor([0])]; + tensor expand_dims_27 = const()[name = string("expand_dims_27"), val = tensor([0])]; + tensor expand_dims_28 = const()[name = string("expand_dims_28"), val = tensor([24])]; + int32 concat_38_axis_0 = const()[name = string("concat_38_axis_0"), val = int32(0)]; + bool concat_38_interleave_0 = const()[name = string("concat_38_interleave_0"), val = bool(false)]; + tensor concat_38 = concat(axis = concat_38_axis_0, interleave = concat_38_interleave_0, values = (expand_dims_24, expand_dims_25, current_pos, expand_dims_27))[name = string("concat_38")]; + tensor concat_39_values1_0 = const()[name = string("concat_39_values1_0"), val = tensor([0])]; + tensor concat_39_values3_0 = const()[name = string("concat_39_values3_0"), val = tensor([0])]; + int32 concat_39_axis_0 = const()[name = string("concat_39_axis_0"), val = int32(0)]; + bool concat_39_interleave_0 = const()[name = string("concat_39_interleave_0"), val = bool(false)]; + tensor concat_39 = concat(axis = concat_39_axis_0, interleave = concat_39_interleave_0, values = (expand_dims_28, concat_39_values1_0, var_337, concat_39_values3_0))[name = string("concat_39")]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_5_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_5_cast_fp16 = slice_update(begin = concat_38, begin_mask = model_model_kv_cache_0_internal_tensor_assign_5_begin_mask_0, end = concat_39, end_mask = model_model_kv_cache_0_internal_tensor_assign_5_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_5_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_5_stride_0, update = rotated_11, x = coreml_update_state_17)[name = string("model_model_kv_cache_0_internal_tensor_assign_5_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_5_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_18_write_state")]; + tensor coreml_update_state_18 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_18")]; + tensor expand_dims_30 = const()[name = string("expand_dims_30"), val = tensor([51])]; + tensor expand_dims_31 = const()[name = string("expand_dims_31"), val = tensor([0])]; + tensor expand_dims_33 = const()[name = string("expand_dims_33"), val = tensor([0])]; + tensor expand_dims_34 = const()[name = string("expand_dims_34"), val = tensor([52])]; + int32 concat_42_axis_0 = const()[name = string("concat_42_axis_0"), val = int32(0)]; + bool concat_42_interleave_0 = const()[name = string("concat_42_interleave_0"), val = bool(false)]; + tensor concat_42 = concat(axis = concat_42_axis_0, interleave = concat_42_interleave_0, values = (expand_dims_30, expand_dims_31, current_pos, expand_dims_33))[name = string("concat_42")]; + tensor concat_43_values1_0 = const()[name = string("concat_43_values1_0"), val = tensor([0])]; + tensor concat_43_values3_0 = const()[name = string("concat_43_values3_0"), val = tensor([0])]; + int32 concat_43_axis_0 = const()[name = string("concat_43_axis_0"), val = int32(0)]; + bool concat_43_interleave_0 = const()[name = string("concat_43_interleave_0"), val = bool(false)]; + tensor concat_43 = concat(axis = concat_43_axis_0, interleave = concat_43_interleave_0, values = (expand_dims_34, concat_43_values1_0, var_337, concat_43_values3_0))[name = string("concat_43")]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_6_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_15 = transpose(perm = var_678, x = var_677)[name = string("transpose_29")]; + tensor model_model_kv_cache_0_internal_tensor_assign_6_cast_fp16 = slice_update(begin = concat_42, begin_mask = model_model_kv_cache_0_internal_tensor_assign_6_begin_mask_0, end = concat_43, end_mask = model_model_kv_cache_0_internal_tensor_assign_6_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_6_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_6_stride_0, update = value_states_15, x = coreml_update_state_18)[name = string("model_model_kv_cache_0_internal_tensor_assign_6_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_6_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_19_write_state")]; + tensor coreml_update_state_19 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_19")]; + tensor var_745_begin_0 = const()[name = string("op_745_begin_0"), val = tensor([23, 0, 0, 0])]; + tensor var_745_end_0 = const()[name = string("op_745_end_0"), val = tensor([24, 8, 1024, 128])]; + tensor var_745_end_mask_0 = const()[name = string("op_745_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_745_cast_fp16 = slice_by_index(begin = var_745_begin_0, end = var_745_end_0, end_mask = var_745_end_mask_0, x = coreml_update_state_19)[name = string("op_745_cast_fp16")]; + tensor K_layer_cache_5_axes_0 = const()[name = string("K_layer_cache_5_axes_0"), val = tensor([0])]; + tensor K_layer_cache_5_cast_fp16 = squeeze(axes = K_layer_cache_5_axes_0, x = var_745_cast_fp16)[name = string("K_layer_cache_5_cast_fp16")]; + tensor var_747_begin_0 = const()[name = string("op_747_begin_0"), val = tensor([51, 0, 0, 0])]; + tensor var_747_end_0 = const()[name = string("op_747_end_0"), val = tensor([52, 8, 1024, 128])]; + tensor var_747_end_mask_0 = const()[name = string("op_747_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_747_cast_fp16 = slice_by_index(begin = var_747_begin_0, end = var_747_end_0, end_mask = var_747_end_mask_0, x = coreml_update_state_19)[name = string("op_747_cast_fp16")]; + tensor V_layer_cache_5_axes_0 = const()[name = string("V_layer_cache_5_axes_0"), val = tensor([0])]; + tensor V_layer_cache_5_cast_fp16 = squeeze(axes = V_layer_cache_5_axes_0, x = var_747_cast_fp16)[name = string("V_layer_cache_5_cast_fp16")]; + tensor x_67_axes_0 = const()[name = string("x_67_axes_0"), val = tensor([1])]; + tensor x_67_cast_fp16 = expand_dims(axes = x_67_axes_0, x = K_layer_cache_5_cast_fp16)[name = string("x_67_cast_fp16")]; + tensor var_756 = const()[name = string("op_756"), val = tensor([1, 3, 1, 1])]; + tensor x_69_cast_fp16 = tile(reps = var_756, x = x_67_cast_fp16)[name = string("x_69_cast_fp16")]; + tensor var_760 = const()[name = string("op_760"), val = tensor([1, -1, 1024, 128])]; + tensor var_761_cast_fp16 = reshape(shape = var_760, x = x_69_cast_fp16)[name = string("op_761_cast_fp16")]; + tensor x_73_axes_0 = const()[name = string("x_73_axes_0"), val = tensor([1])]; + tensor x_73_cast_fp16 = expand_dims(axes = x_73_axes_0, x = V_layer_cache_5_cast_fp16)[name = string("x_73_cast_fp16")]; + tensor var_763 = const()[name = string("op_763"), val = tensor([1, 3, 1, 1])]; + tensor x_75_cast_fp16 = tile(reps = var_763, x = x_73_cast_fp16)[name = string("x_75_cast_fp16")]; + bool var_770_transpose_x_0 = const()[name = string("op_770_transpose_x_0"), val = bool(false)]; + bool var_770_transpose_y_0 = const()[name = string("op_770_transpose_y_0"), val = bool(true)]; + tensor var_770_cast_fp16 = matmul(transpose_x = var_770_transpose_x_0, transpose_y = var_770_transpose_y_0, x = rotated_9, y = var_761_cast_fp16)[name = string("op_770_cast_fp16")]; + fp16 var_771_to_fp16 = const()[name = string("op_771_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_5_cast_fp16 = mul(x = var_770_cast_fp16, y = var_771_to_fp16)[name = string("attn_weights_5_cast_fp16")]; + tensor x_77_cast_fp16 = add(x = attn_weights_5_cast_fp16, y = causal_mask)[name = string("x_77_cast_fp16")]; + tensor reduce_max_2_axes_0 = const()[name = string("reduce_max_2_axes_0"), val = tensor([-1])]; + bool reduce_max_2_keep_dims_0 = const()[name = string("reduce_max_2_keep_dims_0"), val = bool(true)]; + tensor reduce_max_2_cast_fp16 = reduce_max(axes = reduce_max_2_axes_0, keep_dims = reduce_max_2_keep_dims_0, x = x_77_cast_fp16)[name = string("reduce_max_2_cast_fp16")]; + tensor x_79_cast_fp16 = sub(x = x_77_cast_fp16, y = reduce_max_2_cast_fp16)[name = string("x_79_cast_fp16")]; + tensor exp_x_5_cast_fp16 = exp(x = x_79_cast_fp16)[name = string("exp_x_5_cast_fp16")]; + tensor var_782_axes_0 = const()[name = string("op_782_axes_0"), val = tensor([-1])]; + bool var_782_keep_dims_0 = const()[name = string("op_782_keep_dims_0"), val = bool(true)]; + tensor var_782_cast_fp16 = reduce_sum(axes = var_782_axes_0, keep_dims = var_782_keep_dims_0, x = exp_x_5_cast_fp16)[name = string("op_782_cast_fp16")]; + tensor var_783_cast_fp16 = real_div(x = exp_x_5_cast_fp16, y = var_782_cast_fp16)[name = string("op_783_cast_fp16")]; + tensor concat_48 = const()[name = string("concat_48"), val = tensor([24, 64, 1024])]; + tensor reshape_6_cast_fp16 = reshape(shape = concat_48, x = var_783_cast_fp16)[name = string("reshape_6_cast_fp16")]; + tensor concat_49 = const()[name = string("concat_49"), val = tensor([24, 1024, 128])]; + tensor reshape_7_cast_fp16 = reshape(shape = concat_49, x = x_75_cast_fp16)[name = string("reshape_7_cast_fp16")]; + bool matmul_2_transpose_x_0 = const()[name = string("matmul_2_transpose_x_0"), val = bool(false)]; + bool matmul_2_transpose_y_0 = const()[name = string("matmul_2_transpose_y_0"), val = bool(false)]; + tensor matmul_2_cast_fp16 = matmul(transpose_x = matmul_2_transpose_x_0, transpose_y = matmul_2_transpose_y_0, x = reshape_6_cast_fp16, y = reshape_7_cast_fp16)[name = string("matmul_2_cast_fp16")]; + tensor concat_53 = const()[name = string("concat_53"), val = tensor([1, 24, 64, 128])]; + tensor reshape_8_cast_fp16 = reshape(shape = concat_53, x = matmul_2_cast_fp16)[name = string("reshape_8_cast_fp16")]; + tensor var_786_perm_0 = const()[name = string("op_786_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_788 = const()[name = string("op_788"), val = tensor([1, 64, 3072])]; + tensor var_786_cast_fp16 = transpose(perm = var_786_perm_0, x = reshape_8_cast_fp16)[name = string("transpose_28")]; + tensor input_33_cast_fp16 = reshape(shape = var_788, x = var_786_cast_fp16)[name = string("input_33_cast_fp16")]; + tensor model_model_layers_23_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(736012352))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745449600))))[name = string("model_model_layers_23_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_2_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_23_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_33_cast_fp16)[name = string("linear_2_cast_fp16")]; + tensor hidden_states_21_cast_fp16 = add(x = hidden_states_17_cast_fp16, y = linear_2_cast_fp16)[name = string("hidden_states_21_cast_fp16")]; + tensor mean_11_axes_0 = const()[name = string("mean_11_axes_0"), val = tensor([-1])]; + bool mean_11_keep_dims_0 = const()[name = string("mean_11_keep_dims_0"), val = bool(true)]; + tensor mean_11_cast_fp16 = reduce_mean(axes = mean_11_axes_0, keep_dims = mean_11_keep_dims_0, x = hidden_states_21_cast_fp16)[name = string("mean_11_cast_fp16")]; + tensor input_35_cast_fp16 = sub(x = hidden_states_21_cast_fp16, y = mean_11_cast_fp16)[name = string("input_35_cast_fp16")]; + tensor var_799_axes_0 = const()[name = string("op_799_axes_0"), val = tensor([-1])]; + tensor model_model_layers_23_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_23_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745646272)))]; + tensor var_799_cast_fp16 = layer_norm(axes = var_799_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_23_post_attention_layernorm_weight_to_fp16, x = input_35_cast_fp16)[name = string("op_799_cast_fp16")]; + tensor var_806 = const()[name = string("op_806"), val = tensor([0, 2, 1])]; + tensor input_37_axes_0 = const()[name = string("input_37_axes_0"), val = tensor([2])]; + tensor var_807 = transpose(perm = var_806, x = var_799_cast_fp16)[name = string("transpose_27")]; + tensor input_37 = expand_dims(axes = input_37_axes_0, x = var_807)[name = string("input_37")]; + string input_39_pad_type_0 = const()[name = string("input_39_pad_type_0"), val = string("valid")]; + tensor input_39_strides_0 = const()[name = string("input_39_strides_0"), val = tensor([1, 1])]; + tensor input_39_pad_0 = const()[name = string("input_39_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_39_dilations_0 = const()[name = string("input_39_dilations_0"), val = tensor([1, 1])]; + int32 input_39_groups_0 = const()[name = string("input_39_groups_0"), val = int32(1)]; + tensor input_39 = conv(dilations = input_39_dilations_0, groups = input_39_groups_0, pad = input_39_pad_0, pad_type = input_39_pad_type_0, strides = input_39_strides_0, weight = model_model_layers_23_mlp_gate_proj_weight_palettized, x = input_37)[name = string("input_39")]; + string up_states_5_pad_type_0 = const()[name = string("up_states_5_pad_type_0"), val = string("valid")]; + tensor up_states_5_strides_0 = const()[name = string("up_states_5_strides_0"), val = tensor([1, 1])]; + tensor up_states_5_pad_0 = const()[name = string("up_states_5_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_5_dilations_0 = const()[name = string("up_states_5_dilations_0"), val = tensor([1, 1])]; + int32 up_states_5_groups_0 = const()[name = string("up_states_5_groups_0"), val = int32(1)]; + tensor up_states_5 = conv(dilations = up_states_5_dilations_0, groups = up_states_5_groups_0, pad = up_states_5_pad_0, pad_type = up_states_5_pad_type_0, strides = up_states_5_strides_0, weight = model_model_layers_23_mlp_up_proj_weight_palettized, x = input_37)[name = string("up_states_5")]; + tensor gate_states_5 = silu(x = input_39)[name = string("gate_states_5")]; + tensor input_41 = mul(x = gate_states_5, y = up_states_5)[name = string("input_41")]; + string hidden_states_23_pad_type_0 = const()[name = string("hidden_states_23_pad_type_0"), val = string("valid")]; + tensor hidden_states_23_strides_0 = const()[name = string("hidden_states_23_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_23_pad_0 = const()[name = string("hidden_states_23_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_23_dilations_0 = const()[name = string("hidden_states_23_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_23_groups_0 = const()[name = string("hidden_states_23_groups_0"), val = int32(1)]; + tensor hidden_states_23 = conv(dilations = hidden_states_23_dilations_0, groups = hidden_states_23_groups_0, pad = hidden_states_23_pad_0, pad_type = hidden_states_23_pad_type_0, strides = hidden_states_23_strides_0, weight = model_model_layers_23_mlp_down_proj_weight_palettized, x = input_41)[name = string("hidden_states_23")]; + tensor var_829_axes_0 = const()[name = string("op_829_axes_0"), val = tensor([2])]; + tensor var_829 = squeeze(axes = var_829_axes_0, x = hidden_states_23)[name = string("op_829")]; + tensor var_830 = const()[name = string("op_830"), val = tensor([0, 2, 1])]; + tensor var_831 = transpose(perm = var_830, x = var_829)[name = string("transpose_26")]; + tensor hidden_states_25_cast_fp16 = add(x = hidden_states_21_cast_fp16, y = var_831)[name = string("hidden_states_25_cast_fp16")]; + tensor mean_13_axes_0 = const()[name = string("mean_13_axes_0"), val = tensor([-1])]; + bool mean_13_keep_dims_0 = const()[name = string("mean_13_keep_dims_0"), val = bool(true)]; + tensor mean_13_cast_fp16 = reduce_mean(axes = mean_13_axes_0, keep_dims = mean_13_keep_dims_0, x = hidden_states_25_cast_fp16)[name = string("mean_13_cast_fp16")]; + tensor input_43_cast_fp16 = sub(x = hidden_states_25_cast_fp16, y = mean_13_cast_fp16)[name = string("input_43_cast_fp16")]; + tensor var_839_axes_0 = const()[name = string("op_839_axes_0"), val = tensor([-1])]; + tensor model_model_layers_24_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_24_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745652480)))]; + tensor var_839_cast_fp16 = layer_norm(axes = var_839_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_24_input_layernorm_weight_to_fp16, x = input_43_cast_fp16)[name = string("op_839_cast_fp16")]; + tensor var_843 = const()[name = string("op_843"), val = tensor([0, 2, 1])]; + tensor var_845_axes_0 = const()[name = string("op_845_axes_0"), val = tensor([2])]; + tensor var_844 = transpose(perm = var_843, x = var_839_cast_fp16)[name = string("transpose_25")]; + tensor var_845 = expand_dims(axes = var_845_axes_0, x = var_844)[name = string("op_845")]; + string query_states_13_pad_type_0 = const()[name = string("query_states_13_pad_type_0"), val = string("valid")]; + tensor query_states_13_strides_0 = const()[name = string("query_states_13_strides_0"), val = tensor([1, 1])]; + tensor query_states_13_pad_0 = const()[name = string("query_states_13_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_13_dilations_0 = const()[name = string("query_states_13_dilations_0"), val = tensor([1, 1])]; + int32 query_states_13_groups_0 = const()[name = string("query_states_13_groups_0"), val = int32(1)]; + tensor query_states_13 = conv(dilations = query_states_13_dilations_0, groups = query_states_13_groups_0, pad = query_states_13_pad_0, pad_type = query_states_13_pad_type_0, strides = query_states_13_strides_0, weight = model_model_layers_24_self_attn_q_proj_weight_palettized, x = var_845)[name = string("query_states_13")]; + string key_states_19_pad_type_0 = const()[name = string("key_states_19_pad_type_0"), val = string("valid")]; + tensor key_states_19_strides_0 = const()[name = string("key_states_19_strides_0"), val = tensor([1, 1])]; + tensor key_states_19_pad_0 = const()[name = string("key_states_19_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_19_dilations_0 = const()[name = string("key_states_19_dilations_0"), val = tensor([1, 1])]; + int32 key_states_19_groups_0 = const()[name = string("key_states_19_groups_0"), val = int32(1)]; + tensor key_states_19 = conv(dilations = key_states_19_dilations_0, groups = key_states_19_groups_0, pad = key_states_19_pad_0, pad_type = key_states_19_pad_type_0, strides = key_states_19_strides_0, weight = model_model_layers_24_self_attn_k_proj_weight_palettized, x = var_845)[name = string("key_states_19")]; + string value_states_19_pad_type_0 = const()[name = string("value_states_19_pad_type_0"), val = string("valid")]; + tensor value_states_19_strides_0 = const()[name = string("value_states_19_strides_0"), val = tensor([1, 1])]; + tensor value_states_19_pad_0 = const()[name = string("value_states_19_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_19_dilations_0 = const()[name = string("value_states_19_dilations_0"), val = tensor([1, 1])]; + int32 value_states_19_groups_0 = const()[name = string("value_states_19_groups_0"), val = int32(1)]; + tensor value_states_19 = conv(dilations = value_states_19_dilations_0, groups = value_states_19_groups_0, pad = value_states_19_pad_0, pad_type = value_states_19_pad_type_0, strides = value_states_19_strides_0, weight = model_model_layers_24_self_attn_v_proj_weight_palettized, x = var_845)[name = string("value_states_19")]; + tensor var_865 = const()[name = string("op_865"), val = tensor([1, 24, 128, 64])]; + tensor var_866 = reshape(shape = var_865, x = query_states_13)[name = string("op_866")]; + tensor var_867 = const()[name = string("op_867"), val = tensor([0, 1, 3, 2])]; + tensor var_869 = const()[name = string("op_869"), val = tensor([1, 8, 128, 64])]; + tensor var_870 = reshape(shape = var_869, x = key_states_19)[name = string("op_870")]; + tensor var_871 = const()[name = string("op_871"), val = tensor([0, 1, 3, 2])]; + tensor var_873 = const()[name = string("op_873"), val = tensor([1, 8, 128, 64])]; + tensor var_874 = reshape(shape = var_873, x = value_states_19)[name = string("op_874")]; + tensor var_875 = const()[name = string("op_875"), val = tensor([0, 1, 3, 2])]; + tensor x1_13_begin_0 = const()[name = string("x1_13_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_13_end_0 = const()[name = string("x1_13_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_13_end_mask_0 = const()[name = string("x1_13_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_85 = transpose(perm = var_867, x = var_866)[name = string("transpose_24")]; + tensor x1_13 = slice_by_index(begin = x1_13_begin_0, end = x1_13_end_0, end_mask = x1_13_end_mask_0, x = x_85)[name = string("x1_13")]; + tensor x2_13_begin_0 = const()[name = string("x2_13_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_13_end_0 = const()[name = string("x2_13_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_13_end_mask_0 = const()[name = string("x2_13_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_13 = slice_by_index(begin = x2_13_begin_0, end = x2_13_end_0, end_mask = x2_13_end_mask_0, x = x_85)[name = string("x2_13")]; + tensor var_893 = mul(x = x1_13, y = cos_7)[name = string("op_893")]; + tensor var_894 = mul(x = x2_13, y = sin_7)[name = string("op_894")]; + tensor var_895 = sub(x = var_893, y = var_894)[name = string("op_895")]; + tensor var_896 = mul(x = x2_13, y = cos_7)[name = string("op_896")]; + tensor var_897 = mul(x = x1_13, y = sin_7)[name = string("op_897")]; + tensor var_898 = add(x = var_896, y = var_897)[name = string("op_898")]; + bool rotated_13_interleave_0 = const()[name = string("rotated_13_interleave_0"), val = bool(false)]; + tensor rotated_13 = concat(axis = var_46, interleave = rotated_13_interleave_0, values = (var_895, var_898))[name = string("rotated_13")]; + tensor x1_15_begin_0 = const()[name = string("x1_15_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_15_end_0 = const()[name = string("x1_15_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_15_end_mask_0 = const()[name = string("x1_15_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_89 = transpose(perm = var_871, x = var_870)[name = string("transpose_23")]; + tensor x1_15 = slice_by_index(begin = x1_15_begin_0, end = x1_15_end_0, end_mask = x1_15_end_mask_0, x = x_89)[name = string("x1_15")]; + tensor x2_15_begin_0 = const()[name = string("x2_15_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_15_end_0 = const()[name = string("x2_15_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_15_end_mask_0 = const()[name = string("x2_15_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_15 = slice_by_index(begin = x2_15_begin_0, end = x2_15_end_0, end_mask = x2_15_end_mask_0, x = x_89)[name = string("x2_15")]; + tensor var_914 = mul(x = x1_15, y = cos_7)[name = string("op_914")]; + tensor var_915 = mul(x = x2_15, y = sin_7)[name = string("op_915")]; + tensor var_916 = sub(x = var_914, y = var_915)[name = string("op_916")]; + tensor var_917 = mul(x = x2_15, y = cos_7)[name = string("op_917")]; + tensor var_918 = mul(x = x1_15, y = sin_7)[name = string("op_918")]; + tensor var_919 = add(x = var_917, y = var_918)[name = string("op_919")]; + bool rotated_15_interleave_0 = const()[name = string("rotated_15_interleave_0"), val = bool(false)]; + tensor rotated_15 = concat(axis = var_46, interleave = rotated_15_interleave_0, values = (var_916, var_919))[name = string("rotated_15")]; + tensor expand_dims_36 = const()[name = string("expand_dims_36"), val = tensor([24])]; + tensor expand_dims_37 = const()[name = string("expand_dims_37"), val = tensor([0])]; + tensor expand_dims_39 = const()[name = string("expand_dims_39"), val = tensor([0])]; + tensor expand_dims_40 = const()[name = string("expand_dims_40"), val = tensor([25])]; + int32 concat_56_axis_0 = const()[name = string("concat_56_axis_0"), val = int32(0)]; + bool concat_56_interleave_0 = const()[name = string("concat_56_interleave_0"), val = bool(false)]; + tensor concat_56 = concat(axis = concat_56_axis_0, interleave = concat_56_interleave_0, values = (expand_dims_36, expand_dims_37, current_pos, expand_dims_39))[name = string("concat_56")]; + tensor concat_57_values1_0 = const()[name = string("concat_57_values1_0"), val = tensor([0])]; + tensor concat_57_values3_0 = const()[name = string("concat_57_values3_0"), val = tensor([0])]; + int32 concat_57_axis_0 = const()[name = string("concat_57_axis_0"), val = int32(0)]; + bool concat_57_interleave_0 = const()[name = string("concat_57_interleave_0"), val = bool(false)]; + tensor concat_57 = concat(axis = concat_57_axis_0, interleave = concat_57_interleave_0, values = (expand_dims_40, concat_57_values1_0, var_337, concat_57_values3_0))[name = string("concat_57")]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_7_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_7_cast_fp16 = slice_update(begin = concat_56, begin_mask = model_model_kv_cache_0_internal_tensor_assign_7_begin_mask_0, end = concat_57, end_mask = model_model_kv_cache_0_internal_tensor_assign_7_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_7_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_7_stride_0, update = rotated_15, x = coreml_update_state_19)[name = string("model_model_kv_cache_0_internal_tensor_assign_7_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_7_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_20_write_state")]; + tensor coreml_update_state_20 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_20")]; + tensor expand_dims_42 = const()[name = string("expand_dims_42"), val = tensor([52])]; + tensor expand_dims_43 = const()[name = string("expand_dims_43"), val = tensor([0])]; + tensor expand_dims_45 = const()[name = string("expand_dims_45"), val = tensor([0])]; + tensor expand_dims_46 = const()[name = string("expand_dims_46"), val = tensor([53])]; + int32 concat_60_axis_0 = const()[name = string("concat_60_axis_0"), val = int32(0)]; + bool concat_60_interleave_0 = const()[name = string("concat_60_interleave_0"), val = bool(false)]; + tensor concat_60 = concat(axis = concat_60_axis_0, interleave = concat_60_interleave_0, values = (expand_dims_42, expand_dims_43, current_pos, expand_dims_45))[name = string("concat_60")]; + tensor concat_61_values1_0 = const()[name = string("concat_61_values1_0"), val = tensor([0])]; + tensor concat_61_values3_0 = const()[name = string("concat_61_values3_0"), val = tensor([0])]; + int32 concat_61_axis_0 = const()[name = string("concat_61_axis_0"), val = int32(0)]; + bool concat_61_interleave_0 = const()[name = string("concat_61_interleave_0"), val = bool(false)]; + tensor concat_61 = concat(axis = concat_61_axis_0, interleave = concat_61_interleave_0, values = (expand_dims_46, concat_61_values1_0, var_337, concat_61_values3_0))[name = string("concat_61")]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_8_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_21 = transpose(perm = var_875, x = var_874)[name = string("transpose_22")]; + tensor model_model_kv_cache_0_internal_tensor_assign_8_cast_fp16 = slice_update(begin = concat_60, begin_mask = model_model_kv_cache_0_internal_tensor_assign_8_begin_mask_0, end = concat_61, end_mask = model_model_kv_cache_0_internal_tensor_assign_8_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_8_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_8_stride_0, update = value_states_21, x = coreml_update_state_20)[name = string("model_model_kv_cache_0_internal_tensor_assign_8_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_8_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_21_write_state")]; + tensor coreml_update_state_21 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_21")]; + tensor var_942_begin_0 = const()[name = string("op_942_begin_0"), val = tensor([24, 0, 0, 0])]; + tensor var_942_end_0 = const()[name = string("op_942_end_0"), val = tensor([25, 8, 1024, 128])]; + tensor var_942_end_mask_0 = const()[name = string("op_942_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_942_cast_fp16 = slice_by_index(begin = var_942_begin_0, end = var_942_end_0, end_mask = var_942_end_mask_0, x = coreml_update_state_21)[name = string("op_942_cast_fp16")]; + tensor K_layer_cache_7_axes_0 = const()[name = string("K_layer_cache_7_axes_0"), val = tensor([0])]; + tensor K_layer_cache_7_cast_fp16 = squeeze(axes = K_layer_cache_7_axes_0, x = var_942_cast_fp16)[name = string("K_layer_cache_7_cast_fp16")]; + tensor var_944_begin_0 = const()[name = string("op_944_begin_0"), val = tensor([52, 0, 0, 0])]; + tensor var_944_end_0 = const()[name = string("op_944_end_0"), val = tensor([53, 8, 1024, 128])]; + tensor var_944_end_mask_0 = const()[name = string("op_944_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_944_cast_fp16 = slice_by_index(begin = var_944_begin_0, end = var_944_end_0, end_mask = var_944_end_mask_0, x = coreml_update_state_21)[name = string("op_944_cast_fp16")]; + tensor V_layer_cache_7_axes_0 = const()[name = string("V_layer_cache_7_axes_0"), val = tensor([0])]; + tensor V_layer_cache_7_cast_fp16 = squeeze(axes = V_layer_cache_7_axes_0, x = var_944_cast_fp16)[name = string("V_layer_cache_7_cast_fp16")]; + tensor x_95_axes_0 = const()[name = string("x_95_axes_0"), val = tensor([1])]; + tensor x_95_cast_fp16 = expand_dims(axes = x_95_axes_0, x = K_layer_cache_7_cast_fp16)[name = string("x_95_cast_fp16")]; + tensor var_953 = const()[name = string("op_953"), val = tensor([1, 3, 1, 1])]; + tensor x_97_cast_fp16 = tile(reps = var_953, x = x_95_cast_fp16)[name = string("x_97_cast_fp16")]; + tensor var_957 = const()[name = string("op_957"), val = tensor([1, -1, 1024, 128])]; + tensor var_958_cast_fp16 = reshape(shape = var_957, x = x_97_cast_fp16)[name = string("op_958_cast_fp16")]; + tensor x_101_axes_0 = const()[name = string("x_101_axes_0"), val = tensor([1])]; + tensor x_101_cast_fp16 = expand_dims(axes = x_101_axes_0, x = V_layer_cache_7_cast_fp16)[name = string("x_101_cast_fp16")]; + tensor var_960 = const()[name = string("op_960"), val = tensor([1, 3, 1, 1])]; + tensor x_103_cast_fp16 = tile(reps = var_960, x = x_101_cast_fp16)[name = string("x_103_cast_fp16")]; + bool var_967_transpose_x_0 = const()[name = string("op_967_transpose_x_0"), val = bool(false)]; + bool var_967_transpose_y_0 = const()[name = string("op_967_transpose_y_0"), val = bool(true)]; + tensor var_967_cast_fp16 = matmul(transpose_x = var_967_transpose_x_0, transpose_y = var_967_transpose_y_0, x = rotated_13, y = var_958_cast_fp16)[name = string("op_967_cast_fp16")]; + fp16 var_968_to_fp16 = const()[name = string("op_968_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_7_cast_fp16 = mul(x = var_967_cast_fp16, y = var_968_to_fp16)[name = string("attn_weights_7_cast_fp16")]; + tensor x_105_cast_fp16 = add(x = attn_weights_7_cast_fp16, y = causal_mask)[name = string("x_105_cast_fp16")]; + tensor reduce_max_3_axes_0 = const()[name = string("reduce_max_3_axes_0"), val = tensor([-1])]; + bool reduce_max_3_keep_dims_0 = const()[name = string("reduce_max_3_keep_dims_0"), val = bool(true)]; + tensor reduce_max_3_cast_fp16 = reduce_max(axes = reduce_max_3_axes_0, keep_dims = reduce_max_3_keep_dims_0, x = x_105_cast_fp16)[name = string("reduce_max_3_cast_fp16")]; + tensor x_107_cast_fp16 = sub(x = x_105_cast_fp16, y = reduce_max_3_cast_fp16)[name = string("x_107_cast_fp16")]; + tensor exp_x_7_cast_fp16 = exp(x = x_107_cast_fp16)[name = string("exp_x_7_cast_fp16")]; + tensor var_979_axes_0 = const()[name = string("op_979_axes_0"), val = tensor([-1])]; + bool var_979_keep_dims_0 = const()[name = string("op_979_keep_dims_0"), val = bool(true)]; + tensor var_979_cast_fp16 = reduce_sum(axes = var_979_axes_0, keep_dims = var_979_keep_dims_0, x = exp_x_7_cast_fp16)[name = string("op_979_cast_fp16")]; + tensor var_980_cast_fp16 = real_div(x = exp_x_7_cast_fp16, y = var_979_cast_fp16)[name = string("op_980_cast_fp16")]; + tensor concat_66 = const()[name = string("concat_66"), val = tensor([24, 64, 1024])]; + tensor reshape_9_cast_fp16 = reshape(shape = concat_66, x = var_980_cast_fp16)[name = string("reshape_9_cast_fp16")]; + tensor concat_67 = const()[name = string("concat_67"), val = tensor([24, 1024, 128])]; + tensor reshape_10_cast_fp16 = reshape(shape = concat_67, x = x_103_cast_fp16)[name = string("reshape_10_cast_fp16")]; + bool matmul_3_transpose_x_0 = const()[name = string("matmul_3_transpose_x_0"), val = bool(false)]; + bool matmul_3_transpose_y_0 = const()[name = string("matmul_3_transpose_y_0"), val = bool(false)]; + tensor matmul_3_cast_fp16 = matmul(transpose_x = matmul_3_transpose_x_0, transpose_y = matmul_3_transpose_y_0, x = reshape_9_cast_fp16, y = reshape_10_cast_fp16)[name = string("matmul_3_cast_fp16")]; + tensor concat_71 = const()[name = string("concat_71"), val = tensor([1, 24, 64, 128])]; + tensor reshape_11_cast_fp16 = reshape(shape = concat_71, x = matmul_3_cast_fp16)[name = string("reshape_11_cast_fp16")]; + tensor var_983_perm_0 = const()[name = string("op_983_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_985 = const()[name = string("op_985"), val = tensor([1, 64, 3072])]; + tensor var_983_cast_fp16 = transpose(perm = var_983_perm_0, x = reshape_11_cast_fp16)[name = string("transpose_21")]; + tensor input_47_cast_fp16 = reshape(shape = var_985, x = var_983_cast_fp16)[name = string("input_47_cast_fp16")]; + tensor model_model_layers_24_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745658688))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755095936))))[name = string("model_model_layers_24_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_3_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_24_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_47_cast_fp16)[name = string("linear_3_cast_fp16")]; + tensor hidden_states_29_cast_fp16 = add(x = hidden_states_25_cast_fp16, y = linear_3_cast_fp16)[name = string("hidden_states_29_cast_fp16")]; + tensor mean_15_axes_0 = const()[name = string("mean_15_axes_0"), val = tensor([-1])]; + bool mean_15_keep_dims_0 = const()[name = string("mean_15_keep_dims_0"), val = bool(true)]; + tensor mean_15_cast_fp16 = reduce_mean(axes = mean_15_axes_0, keep_dims = mean_15_keep_dims_0, x = hidden_states_29_cast_fp16)[name = string("mean_15_cast_fp16")]; + tensor input_49_cast_fp16 = sub(x = hidden_states_29_cast_fp16, y = mean_15_cast_fp16)[name = string("input_49_cast_fp16")]; + tensor var_996_axes_0 = const()[name = string("op_996_axes_0"), val = tensor([-1])]; + tensor model_model_layers_24_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_24_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755292608)))]; + tensor var_996_cast_fp16 = layer_norm(axes = var_996_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_24_post_attention_layernorm_weight_to_fp16, x = input_49_cast_fp16)[name = string("op_996_cast_fp16")]; + tensor var_1003 = const()[name = string("op_1003"), val = tensor([0, 2, 1])]; + tensor input_51_axes_0 = const()[name = string("input_51_axes_0"), val = tensor([2])]; + tensor var_1004 = transpose(perm = var_1003, x = var_996_cast_fp16)[name = string("transpose_20")]; + tensor input_51 = expand_dims(axes = input_51_axes_0, x = var_1004)[name = string("input_51")]; + string input_53_pad_type_0 = const()[name = string("input_53_pad_type_0"), val = string("valid")]; + tensor input_53_strides_0 = const()[name = string("input_53_strides_0"), val = tensor([1, 1])]; + tensor input_53_pad_0 = const()[name = string("input_53_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_53_dilations_0 = const()[name = string("input_53_dilations_0"), val = tensor([1, 1])]; + int32 input_53_groups_0 = const()[name = string("input_53_groups_0"), val = int32(1)]; + tensor input_53 = conv(dilations = input_53_dilations_0, groups = input_53_groups_0, pad = input_53_pad_0, pad_type = input_53_pad_type_0, strides = input_53_strides_0, weight = model_model_layers_24_mlp_gate_proj_weight_palettized, x = input_51)[name = string("input_53")]; + string up_states_7_pad_type_0 = const()[name = string("up_states_7_pad_type_0"), val = string("valid")]; + tensor up_states_7_strides_0 = const()[name = string("up_states_7_strides_0"), val = tensor([1, 1])]; + tensor up_states_7_pad_0 = const()[name = string("up_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_7_dilations_0 = const()[name = string("up_states_7_dilations_0"), val = tensor([1, 1])]; + int32 up_states_7_groups_0 = const()[name = string("up_states_7_groups_0"), val = int32(1)]; + tensor up_states_7 = conv(dilations = up_states_7_dilations_0, groups = up_states_7_groups_0, pad = up_states_7_pad_0, pad_type = up_states_7_pad_type_0, strides = up_states_7_strides_0, weight = model_model_layers_24_mlp_up_proj_weight_palettized, x = input_51)[name = string("up_states_7")]; + tensor gate_states_7 = silu(x = input_53)[name = string("gate_states_7")]; + tensor input_55 = mul(x = gate_states_7, y = up_states_7)[name = string("input_55")]; + string hidden_states_31_pad_type_0 = const()[name = string("hidden_states_31_pad_type_0"), val = string("valid")]; + tensor hidden_states_31_strides_0 = const()[name = string("hidden_states_31_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_31_pad_0 = const()[name = string("hidden_states_31_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_31_dilations_0 = const()[name = string("hidden_states_31_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_31_groups_0 = const()[name = string("hidden_states_31_groups_0"), val = int32(1)]; + tensor hidden_states_31 = conv(dilations = hidden_states_31_dilations_0, groups = hidden_states_31_groups_0, pad = hidden_states_31_pad_0, pad_type = hidden_states_31_pad_type_0, strides = hidden_states_31_strides_0, weight = model_model_layers_24_mlp_down_proj_weight_palettized, x = input_55)[name = string("hidden_states_31")]; + tensor var_1026_axes_0 = const()[name = string("op_1026_axes_0"), val = tensor([2])]; + tensor var_1026 = squeeze(axes = var_1026_axes_0, x = hidden_states_31)[name = string("op_1026")]; + tensor var_1027 = const()[name = string("op_1027"), val = tensor([0, 2, 1])]; + tensor var_1028 = transpose(perm = var_1027, x = var_1026)[name = string("transpose_19")]; + tensor hidden_states_33_cast_fp16 = add(x = hidden_states_29_cast_fp16, y = var_1028)[name = string("hidden_states_33_cast_fp16")]; + tensor mean_17_axes_0 = const()[name = string("mean_17_axes_0"), val = tensor([-1])]; + bool mean_17_keep_dims_0 = const()[name = string("mean_17_keep_dims_0"), val = bool(true)]; + tensor mean_17_cast_fp16 = reduce_mean(axes = mean_17_axes_0, keep_dims = mean_17_keep_dims_0, x = hidden_states_33_cast_fp16)[name = string("mean_17_cast_fp16")]; + tensor input_57_cast_fp16 = sub(x = hidden_states_33_cast_fp16, y = mean_17_cast_fp16)[name = string("input_57_cast_fp16")]; + tensor var_1036_axes_0 = const()[name = string("op_1036_axes_0"), val = tensor([-1])]; + tensor model_model_layers_25_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_25_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755298816)))]; + tensor var_1036_cast_fp16 = layer_norm(axes = var_1036_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_25_input_layernorm_weight_to_fp16, x = input_57_cast_fp16)[name = string("op_1036_cast_fp16")]; + tensor var_1040 = const()[name = string("op_1040"), val = tensor([0, 2, 1])]; + tensor var_1042_axes_0 = const()[name = string("op_1042_axes_0"), val = tensor([2])]; + tensor var_1041 = transpose(perm = var_1040, x = var_1036_cast_fp16)[name = string("transpose_18")]; + tensor var_1042 = expand_dims(axes = var_1042_axes_0, x = var_1041)[name = string("op_1042")]; + string query_states_17_pad_type_0 = const()[name = string("query_states_17_pad_type_0"), val = string("valid")]; + tensor query_states_17_strides_0 = const()[name = string("query_states_17_strides_0"), val = tensor([1, 1])]; + tensor query_states_17_pad_0 = const()[name = string("query_states_17_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_17_dilations_0 = const()[name = string("query_states_17_dilations_0"), val = tensor([1, 1])]; + int32 query_states_17_groups_0 = const()[name = string("query_states_17_groups_0"), val = int32(1)]; + tensor query_states_17 = conv(dilations = query_states_17_dilations_0, groups = query_states_17_groups_0, pad = query_states_17_pad_0, pad_type = query_states_17_pad_type_0, strides = query_states_17_strides_0, weight = model_model_layers_25_self_attn_q_proj_weight_palettized, x = var_1042)[name = string("query_states_17")]; + string key_states_25_pad_type_0 = const()[name = string("key_states_25_pad_type_0"), val = string("valid")]; + tensor key_states_25_strides_0 = const()[name = string("key_states_25_strides_0"), val = tensor([1, 1])]; + tensor key_states_25_pad_0 = const()[name = string("key_states_25_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_25_dilations_0 = const()[name = string("key_states_25_dilations_0"), val = tensor([1, 1])]; + int32 key_states_25_groups_0 = const()[name = string("key_states_25_groups_0"), val = int32(1)]; + tensor key_states_25 = conv(dilations = key_states_25_dilations_0, groups = key_states_25_groups_0, pad = key_states_25_pad_0, pad_type = key_states_25_pad_type_0, strides = key_states_25_strides_0, weight = model_model_layers_25_self_attn_k_proj_weight_palettized, x = var_1042)[name = string("key_states_25")]; + string value_states_25_pad_type_0 = const()[name = string("value_states_25_pad_type_0"), val = string("valid")]; + tensor value_states_25_strides_0 = const()[name = string("value_states_25_strides_0"), val = tensor([1, 1])]; + tensor value_states_25_pad_0 = const()[name = string("value_states_25_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_25_dilations_0 = const()[name = string("value_states_25_dilations_0"), val = tensor([1, 1])]; + int32 value_states_25_groups_0 = const()[name = string("value_states_25_groups_0"), val = int32(1)]; + tensor value_states_25 = conv(dilations = value_states_25_dilations_0, groups = value_states_25_groups_0, pad = value_states_25_pad_0, pad_type = value_states_25_pad_type_0, strides = value_states_25_strides_0, weight = model_model_layers_25_self_attn_v_proj_weight_palettized, x = var_1042)[name = string("value_states_25")]; + tensor var_1062 = const()[name = string("op_1062"), val = tensor([1, 24, 128, 64])]; + tensor var_1063 = reshape(shape = var_1062, x = query_states_17)[name = string("op_1063")]; + tensor var_1064 = const()[name = string("op_1064"), val = tensor([0, 1, 3, 2])]; + tensor var_1066 = const()[name = string("op_1066"), val = tensor([1, 8, 128, 64])]; + tensor var_1067 = reshape(shape = var_1066, x = key_states_25)[name = string("op_1067")]; + tensor var_1068 = const()[name = string("op_1068"), val = tensor([0, 1, 3, 2])]; + tensor var_1070 = const()[name = string("op_1070"), val = tensor([1, 8, 128, 64])]; + tensor var_1071 = reshape(shape = var_1070, x = value_states_25)[name = string("op_1071")]; + tensor var_1072 = const()[name = string("op_1072"), val = tensor([0, 1, 3, 2])]; + tensor x1_17_begin_0 = const()[name = string("x1_17_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_17_end_0 = const()[name = string("x1_17_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_17_end_mask_0 = const()[name = string("x1_17_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_113 = transpose(perm = var_1064, x = var_1063)[name = string("transpose_17")]; + tensor x1_17 = slice_by_index(begin = x1_17_begin_0, end = x1_17_end_0, end_mask = x1_17_end_mask_0, x = x_113)[name = string("x1_17")]; + tensor x2_17_begin_0 = const()[name = string("x2_17_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_17_end_0 = const()[name = string("x2_17_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_17_end_mask_0 = const()[name = string("x2_17_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_17 = slice_by_index(begin = x2_17_begin_0, end = x2_17_end_0, end_mask = x2_17_end_mask_0, x = x_113)[name = string("x2_17")]; + tensor var_1090 = mul(x = x1_17, y = cos_7)[name = string("op_1090")]; + tensor var_1091 = mul(x = x2_17, y = sin_7)[name = string("op_1091")]; + tensor var_1092 = sub(x = var_1090, y = var_1091)[name = string("op_1092")]; + tensor var_1093 = mul(x = x2_17, y = cos_7)[name = string("op_1093")]; + tensor var_1094 = mul(x = x1_17, y = sin_7)[name = string("op_1094")]; + tensor var_1095 = add(x = var_1093, y = var_1094)[name = string("op_1095")]; + bool rotated_17_interleave_0 = const()[name = string("rotated_17_interleave_0"), val = bool(false)]; + tensor rotated_17 = concat(axis = var_46, interleave = rotated_17_interleave_0, values = (var_1092, var_1095))[name = string("rotated_17")]; + tensor x1_19_begin_0 = const()[name = string("x1_19_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_19_end_0 = const()[name = string("x1_19_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_19_end_mask_0 = const()[name = string("x1_19_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_117 = transpose(perm = var_1068, x = var_1067)[name = string("transpose_16")]; + tensor x1_19 = slice_by_index(begin = x1_19_begin_0, end = x1_19_end_0, end_mask = x1_19_end_mask_0, x = x_117)[name = string("x1_19")]; + tensor x2_19_begin_0 = const()[name = string("x2_19_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_19_end_0 = const()[name = string("x2_19_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_19_end_mask_0 = const()[name = string("x2_19_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_19 = slice_by_index(begin = x2_19_begin_0, end = x2_19_end_0, end_mask = x2_19_end_mask_0, x = x_117)[name = string("x2_19")]; + tensor var_1111 = mul(x = x1_19, y = cos_7)[name = string("op_1111")]; + tensor var_1112 = mul(x = x2_19, y = sin_7)[name = string("op_1112")]; + tensor var_1113 = sub(x = var_1111, y = var_1112)[name = string("op_1113")]; + tensor var_1114 = mul(x = x2_19, y = cos_7)[name = string("op_1114")]; + tensor var_1115 = mul(x = x1_19, y = sin_7)[name = string("op_1115")]; + tensor var_1116 = add(x = var_1114, y = var_1115)[name = string("op_1116")]; + bool rotated_19_interleave_0 = const()[name = string("rotated_19_interleave_0"), val = bool(false)]; + tensor rotated_19 = concat(axis = var_46, interleave = rotated_19_interleave_0, values = (var_1113, var_1116))[name = string("rotated_19")]; + tensor expand_dims_48 = const()[name = string("expand_dims_48"), val = tensor([25])]; + tensor expand_dims_49 = const()[name = string("expand_dims_49"), val = tensor([0])]; + tensor expand_dims_51 = const()[name = string("expand_dims_51"), val = tensor([0])]; + tensor expand_dims_52 = const()[name = string("expand_dims_52"), val = tensor([26])]; + int32 concat_74_axis_0 = const()[name = string("concat_74_axis_0"), val = int32(0)]; + bool concat_74_interleave_0 = const()[name = string("concat_74_interleave_0"), val = bool(false)]; + tensor concat_74 = concat(axis = concat_74_axis_0, interleave = concat_74_interleave_0, values = (expand_dims_48, expand_dims_49, current_pos, expand_dims_51))[name = string("concat_74")]; + tensor concat_75_values1_0 = const()[name = string("concat_75_values1_0"), val = tensor([0])]; + tensor concat_75_values3_0 = const()[name = string("concat_75_values3_0"), val = tensor([0])]; + int32 concat_75_axis_0 = const()[name = string("concat_75_axis_0"), val = int32(0)]; + bool concat_75_interleave_0 = const()[name = string("concat_75_interleave_0"), val = bool(false)]; + tensor concat_75 = concat(axis = concat_75_axis_0, interleave = concat_75_interleave_0, values = (expand_dims_52, concat_75_values1_0, var_337, concat_75_values3_0))[name = string("concat_75")]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_9_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_9_cast_fp16 = slice_update(begin = concat_74, begin_mask = model_model_kv_cache_0_internal_tensor_assign_9_begin_mask_0, end = concat_75, end_mask = model_model_kv_cache_0_internal_tensor_assign_9_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_9_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_9_stride_0, update = rotated_19, x = coreml_update_state_21)[name = string("model_model_kv_cache_0_internal_tensor_assign_9_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_9_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_22_write_state")]; + tensor coreml_update_state_22 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_22")]; + tensor expand_dims_54 = const()[name = string("expand_dims_54"), val = tensor([53])]; + tensor expand_dims_55 = const()[name = string("expand_dims_55"), val = tensor([0])]; + tensor expand_dims_57 = const()[name = string("expand_dims_57"), val = tensor([0])]; + tensor expand_dims_58 = const()[name = string("expand_dims_58"), val = tensor([54])]; + int32 concat_78_axis_0 = const()[name = string("concat_78_axis_0"), val = int32(0)]; + bool concat_78_interleave_0 = const()[name = string("concat_78_interleave_0"), val = bool(false)]; + tensor concat_78 = concat(axis = concat_78_axis_0, interleave = concat_78_interleave_0, values = (expand_dims_54, expand_dims_55, current_pos, expand_dims_57))[name = string("concat_78")]; + tensor concat_79_values1_0 = const()[name = string("concat_79_values1_0"), val = tensor([0])]; + tensor concat_79_values3_0 = const()[name = string("concat_79_values3_0"), val = tensor([0])]; + int32 concat_79_axis_0 = const()[name = string("concat_79_axis_0"), val = int32(0)]; + bool concat_79_interleave_0 = const()[name = string("concat_79_interleave_0"), val = bool(false)]; + tensor concat_79 = concat(axis = concat_79_axis_0, interleave = concat_79_interleave_0, values = (expand_dims_58, concat_79_values1_0, var_337, concat_79_values3_0))[name = string("concat_79")]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_10_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_27 = transpose(perm = var_1072, x = var_1071)[name = string("transpose_15")]; + tensor model_model_kv_cache_0_internal_tensor_assign_10_cast_fp16 = slice_update(begin = concat_78, begin_mask = model_model_kv_cache_0_internal_tensor_assign_10_begin_mask_0, end = concat_79, end_mask = model_model_kv_cache_0_internal_tensor_assign_10_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_10_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_10_stride_0, update = value_states_27, x = coreml_update_state_22)[name = string("model_model_kv_cache_0_internal_tensor_assign_10_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_10_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_23_write_state")]; + tensor coreml_update_state_23 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_23")]; + tensor var_1139_begin_0 = const()[name = string("op_1139_begin_0"), val = tensor([25, 0, 0, 0])]; + tensor var_1139_end_0 = const()[name = string("op_1139_end_0"), val = tensor([26, 8, 1024, 128])]; + tensor var_1139_end_mask_0 = const()[name = string("op_1139_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1139_cast_fp16 = slice_by_index(begin = var_1139_begin_0, end = var_1139_end_0, end_mask = var_1139_end_mask_0, x = coreml_update_state_23)[name = string("op_1139_cast_fp16")]; + tensor K_layer_cache_9_axes_0 = const()[name = string("K_layer_cache_9_axes_0"), val = tensor([0])]; + tensor K_layer_cache_9_cast_fp16 = squeeze(axes = K_layer_cache_9_axes_0, x = var_1139_cast_fp16)[name = string("K_layer_cache_9_cast_fp16")]; + tensor var_1141_begin_0 = const()[name = string("op_1141_begin_0"), val = tensor([53, 0, 0, 0])]; + tensor var_1141_end_0 = const()[name = string("op_1141_end_0"), val = tensor([54, 8, 1024, 128])]; + tensor var_1141_end_mask_0 = const()[name = string("op_1141_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1141_cast_fp16 = slice_by_index(begin = var_1141_begin_0, end = var_1141_end_0, end_mask = var_1141_end_mask_0, x = coreml_update_state_23)[name = string("op_1141_cast_fp16")]; + tensor V_layer_cache_9_axes_0 = const()[name = string("V_layer_cache_9_axes_0"), val = tensor([0])]; + tensor V_layer_cache_9_cast_fp16 = squeeze(axes = V_layer_cache_9_axes_0, x = var_1141_cast_fp16)[name = string("V_layer_cache_9_cast_fp16")]; + tensor x_123_axes_0 = const()[name = string("x_123_axes_0"), val = tensor([1])]; + tensor x_123_cast_fp16 = expand_dims(axes = x_123_axes_0, x = K_layer_cache_9_cast_fp16)[name = string("x_123_cast_fp16")]; + tensor var_1150 = const()[name = string("op_1150"), val = tensor([1, 3, 1, 1])]; + tensor x_125_cast_fp16 = tile(reps = var_1150, x = x_123_cast_fp16)[name = string("x_125_cast_fp16")]; + tensor var_1154 = const()[name = string("op_1154"), val = tensor([1, -1, 1024, 128])]; + tensor var_1155_cast_fp16 = reshape(shape = var_1154, x = x_125_cast_fp16)[name = string("op_1155_cast_fp16")]; + tensor x_129_axes_0 = const()[name = string("x_129_axes_0"), val = tensor([1])]; + tensor x_129_cast_fp16 = expand_dims(axes = x_129_axes_0, x = V_layer_cache_9_cast_fp16)[name = string("x_129_cast_fp16")]; + tensor var_1157 = const()[name = string("op_1157"), val = tensor([1, 3, 1, 1])]; + tensor x_131_cast_fp16 = tile(reps = var_1157, x = x_129_cast_fp16)[name = string("x_131_cast_fp16")]; + bool var_1164_transpose_x_0 = const()[name = string("op_1164_transpose_x_0"), val = bool(false)]; + bool var_1164_transpose_y_0 = const()[name = string("op_1164_transpose_y_0"), val = bool(true)]; + tensor var_1164_cast_fp16 = matmul(transpose_x = var_1164_transpose_x_0, transpose_y = var_1164_transpose_y_0, x = rotated_17, y = var_1155_cast_fp16)[name = string("op_1164_cast_fp16")]; + fp16 var_1165_to_fp16 = const()[name = string("op_1165_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_9_cast_fp16 = mul(x = var_1164_cast_fp16, y = var_1165_to_fp16)[name = string("attn_weights_9_cast_fp16")]; + tensor x_133_cast_fp16 = add(x = attn_weights_9_cast_fp16, y = causal_mask)[name = string("x_133_cast_fp16")]; + tensor reduce_max_4_axes_0 = const()[name = string("reduce_max_4_axes_0"), val = tensor([-1])]; + bool reduce_max_4_keep_dims_0 = const()[name = string("reduce_max_4_keep_dims_0"), val = bool(true)]; + tensor reduce_max_4_cast_fp16 = reduce_max(axes = reduce_max_4_axes_0, keep_dims = reduce_max_4_keep_dims_0, x = x_133_cast_fp16)[name = string("reduce_max_4_cast_fp16")]; + tensor x_135_cast_fp16 = sub(x = x_133_cast_fp16, y = reduce_max_4_cast_fp16)[name = string("x_135_cast_fp16")]; + tensor exp_x_9_cast_fp16 = exp(x = x_135_cast_fp16)[name = string("exp_x_9_cast_fp16")]; + tensor var_1176_axes_0 = const()[name = string("op_1176_axes_0"), val = tensor([-1])]; + bool var_1176_keep_dims_0 = const()[name = string("op_1176_keep_dims_0"), val = bool(true)]; + tensor var_1176_cast_fp16 = reduce_sum(axes = var_1176_axes_0, keep_dims = var_1176_keep_dims_0, x = exp_x_9_cast_fp16)[name = string("op_1176_cast_fp16")]; + tensor var_1177_cast_fp16 = real_div(x = exp_x_9_cast_fp16, y = var_1176_cast_fp16)[name = string("op_1177_cast_fp16")]; + tensor concat_84 = const()[name = string("concat_84"), val = tensor([24, 64, 1024])]; + tensor reshape_12_cast_fp16 = reshape(shape = concat_84, x = var_1177_cast_fp16)[name = string("reshape_12_cast_fp16")]; + tensor concat_85 = const()[name = string("concat_85"), val = tensor([24, 1024, 128])]; + tensor reshape_13_cast_fp16 = reshape(shape = concat_85, x = x_131_cast_fp16)[name = string("reshape_13_cast_fp16")]; + bool matmul_4_transpose_x_0 = const()[name = string("matmul_4_transpose_x_0"), val = bool(false)]; + bool matmul_4_transpose_y_0 = const()[name = string("matmul_4_transpose_y_0"), val = bool(false)]; + tensor matmul_4_cast_fp16 = matmul(transpose_x = matmul_4_transpose_x_0, transpose_y = matmul_4_transpose_y_0, x = reshape_12_cast_fp16, y = reshape_13_cast_fp16)[name = string("matmul_4_cast_fp16")]; + tensor concat_89 = const()[name = string("concat_89"), val = tensor([1, 24, 64, 128])]; + tensor reshape_14_cast_fp16 = reshape(shape = concat_89, x = matmul_4_cast_fp16)[name = string("reshape_14_cast_fp16")]; + tensor var_1180_perm_0 = const()[name = string("op_1180_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1182 = const()[name = string("op_1182"), val = tensor([1, 64, 3072])]; + tensor var_1180_cast_fp16 = transpose(perm = var_1180_perm_0, x = reshape_14_cast_fp16)[name = string("transpose_14")]; + tensor input_61_cast_fp16 = reshape(shape = var_1182, x = var_1180_cast_fp16)[name = string("input_61_cast_fp16")]; + tensor model_model_layers_25_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(755305024))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764742272))))[name = string("model_model_layers_25_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_4_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_25_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_61_cast_fp16)[name = string("linear_4_cast_fp16")]; + tensor hidden_states_37_cast_fp16 = add(x = hidden_states_33_cast_fp16, y = linear_4_cast_fp16)[name = string("hidden_states_37_cast_fp16")]; + tensor mean_19_axes_0 = const()[name = string("mean_19_axes_0"), val = tensor([-1])]; + bool mean_19_keep_dims_0 = const()[name = string("mean_19_keep_dims_0"), val = bool(true)]; + tensor mean_19_cast_fp16 = reduce_mean(axes = mean_19_axes_0, keep_dims = mean_19_keep_dims_0, x = hidden_states_37_cast_fp16)[name = string("mean_19_cast_fp16")]; + tensor input_63_cast_fp16 = sub(x = hidden_states_37_cast_fp16, y = mean_19_cast_fp16)[name = string("input_63_cast_fp16")]; + tensor var_1193_axes_0 = const()[name = string("op_1193_axes_0"), val = tensor([-1])]; + tensor model_model_layers_25_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_25_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764938944)))]; + tensor var_1193_cast_fp16 = layer_norm(axes = var_1193_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_25_post_attention_layernorm_weight_to_fp16, x = input_63_cast_fp16)[name = string("op_1193_cast_fp16")]; + tensor var_1200 = const()[name = string("op_1200"), val = tensor([0, 2, 1])]; + tensor input_65_axes_0 = const()[name = string("input_65_axes_0"), val = tensor([2])]; + tensor var_1201 = transpose(perm = var_1200, x = var_1193_cast_fp16)[name = string("transpose_13")]; + tensor input_65 = expand_dims(axes = input_65_axes_0, x = var_1201)[name = string("input_65")]; + string input_67_pad_type_0 = const()[name = string("input_67_pad_type_0"), val = string("valid")]; + tensor input_67_strides_0 = const()[name = string("input_67_strides_0"), val = tensor([1, 1])]; + tensor input_67_pad_0 = const()[name = string("input_67_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_67_dilations_0 = const()[name = string("input_67_dilations_0"), val = tensor([1, 1])]; + int32 input_67_groups_0 = const()[name = string("input_67_groups_0"), val = int32(1)]; + tensor input_67 = conv(dilations = input_67_dilations_0, groups = input_67_groups_0, pad = input_67_pad_0, pad_type = input_67_pad_type_0, strides = input_67_strides_0, weight = model_model_layers_25_mlp_gate_proj_weight_palettized, x = input_65)[name = string("input_67")]; + string up_states_9_pad_type_0 = const()[name = string("up_states_9_pad_type_0"), val = string("valid")]; + tensor up_states_9_strides_0 = const()[name = string("up_states_9_strides_0"), val = tensor([1, 1])]; + tensor up_states_9_pad_0 = const()[name = string("up_states_9_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_9_dilations_0 = const()[name = string("up_states_9_dilations_0"), val = tensor([1, 1])]; + int32 up_states_9_groups_0 = const()[name = string("up_states_9_groups_0"), val = int32(1)]; + tensor up_states_9 = conv(dilations = up_states_9_dilations_0, groups = up_states_9_groups_0, pad = up_states_9_pad_0, pad_type = up_states_9_pad_type_0, strides = up_states_9_strides_0, weight = model_model_layers_25_mlp_up_proj_weight_palettized, x = input_65)[name = string("up_states_9")]; + tensor gate_states_9 = silu(x = input_67)[name = string("gate_states_9")]; + tensor input_69 = mul(x = gate_states_9, y = up_states_9)[name = string("input_69")]; + string hidden_states_39_pad_type_0 = const()[name = string("hidden_states_39_pad_type_0"), val = string("valid")]; + tensor hidden_states_39_strides_0 = const()[name = string("hidden_states_39_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_39_pad_0 = const()[name = string("hidden_states_39_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_39_dilations_0 = const()[name = string("hidden_states_39_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_39_groups_0 = const()[name = string("hidden_states_39_groups_0"), val = int32(1)]; + tensor hidden_states_39 = conv(dilations = hidden_states_39_dilations_0, groups = hidden_states_39_groups_0, pad = hidden_states_39_pad_0, pad_type = hidden_states_39_pad_type_0, strides = hidden_states_39_strides_0, weight = model_model_layers_25_mlp_down_proj_weight_palettized, x = input_69)[name = string("hidden_states_39")]; + tensor var_1223_axes_0 = const()[name = string("op_1223_axes_0"), val = tensor([2])]; + tensor var_1223 = squeeze(axes = var_1223_axes_0, x = hidden_states_39)[name = string("op_1223")]; + tensor var_1224 = const()[name = string("op_1224"), val = tensor([0, 2, 1])]; + tensor var_1225 = transpose(perm = var_1224, x = var_1223)[name = string("transpose_12")]; + tensor hidden_states_41_cast_fp16 = add(x = hidden_states_37_cast_fp16, y = var_1225)[name = string("hidden_states_41_cast_fp16")]; + tensor mean_21_axes_0 = const()[name = string("mean_21_axes_0"), val = tensor([-1])]; + bool mean_21_keep_dims_0 = const()[name = string("mean_21_keep_dims_0"), val = bool(true)]; + tensor mean_21_cast_fp16 = reduce_mean(axes = mean_21_axes_0, keep_dims = mean_21_keep_dims_0, x = hidden_states_41_cast_fp16)[name = string("mean_21_cast_fp16")]; + tensor input_71_cast_fp16 = sub(x = hidden_states_41_cast_fp16, y = mean_21_cast_fp16)[name = string("input_71_cast_fp16")]; + tensor var_1233_axes_0 = const()[name = string("op_1233_axes_0"), val = tensor([-1])]; + tensor model_model_layers_26_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_26_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764945152)))]; + tensor var_1233_cast_fp16 = layer_norm(axes = var_1233_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_26_input_layernorm_weight_to_fp16, x = input_71_cast_fp16)[name = string("op_1233_cast_fp16")]; + tensor var_1237 = const()[name = string("op_1237"), val = tensor([0, 2, 1])]; + tensor var_1239_axes_0 = const()[name = string("op_1239_axes_0"), val = tensor([2])]; + tensor var_1238 = transpose(perm = var_1237, x = var_1233_cast_fp16)[name = string("transpose_11")]; + tensor var_1239 = expand_dims(axes = var_1239_axes_0, x = var_1238)[name = string("op_1239")]; + string query_states_21_pad_type_0 = const()[name = string("query_states_21_pad_type_0"), val = string("valid")]; + tensor query_states_21_strides_0 = const()[name = string("query_states_21_strides_0"), val = tensor([1, 1])]; + tensor query_states_21_pad_0 = const()[name = string("query_states_21_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_21_dilations_0 = const()[name = string("query_states_21_dilations_0"), val = tensor([1, 1])]; + int32 query_states_21_groups_0 = const()[name = string("query_states_21_groups_0"), val = int32(1)]; + tensor query_states_21 = conv(dilations = query_states_21_dilations_0, groups = query_states_21_groups_0, pad = query_states_21_pad_0, pad_type = query_states_21_pad_type_0, strides = query_states_21_strides_0, weight = model_model_layers_26_self_attn_q_proj_weight_palettized, x = var_1239)[name = string("query_states_21")]; + string key_states_31_pad_type_0 = const()[name = string("key_states_31_pad_type_0"), val = string("valid")]; + tensor key_states_31_strides_0 = const()[name = string("key_states_31_strides_0"), val = tensor([1, 1])]; + tensor key_states_31_pad_0 = const()[name = string("key_states_31_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_31_dilations_0 = const()[name = string("key_states_31_dilations_0"), val = tensor([1, 1])]; + int32 key_states_31_groups_0 = const()[name = string("key_states_31_groups_0"), val = int32(1)]; + tensor key_states_31 = conv(dilations = key_states_31_dilations_0, groups = key_states_31_groups_0, pad = key_states_31_pad_0, pad_type = key_states_31_pad_type_0, strides = key_states_31_strides_0, weight = model_model_layers_26_self_attn_k_proj_weight_palettized, x = var_1239)[name = string("key_states_31")]; + string value_states_31_pad_type_0 = const()[name = string("value_states_31_pad_type_0"), val = string("valid")]; + tensor value_states_31_strides_0 = const()[name = string("value_states_31_strides_0"), val = tensor([1, 1])]; + tensor value_states_31_pad_0 = const()[name = string("value_states_31_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_31_dilations_0 = const()[name = string("value_states_31_dilations_0"), val = tensor([1, 1])]; + int32 value_states_31_groups_0 = const()[name = string("value_states_31_groups_0"), val = int32(1)]; + tensor value_states_31 = conv(dilations = value_states_31_dilations_0, groups = value_states_31_groups_0, pad = value_states_31_pad_0, pad_type = value_states_31_pad_type_0, strides = value_states_31_strides_0, weight = model_model_layers_26_self_attn_v_proj_weight_palettized, x = var_1239)[name = string("value_states_31")]; + tensor var_1259 = const()[name = string("op_1259"), val = tensor([1, 24, 128, 64])]; + tensor var_1260 = reshape(shape = var_1259, x = query_states_21)[name = string("op_1260")]; + tensor var_1261 = const()[name = string("op_1261"), val = tensor([0, 1, 3, 2])]; + tensor var_1263 = const()[name = string("op_1263"), val = tensor([1, 8, 128, 64])]; + tensor var_1264 = reshape(shape = var_1263, x = key_states_31)[name = string("op_1264")]; + tensor var_1265 = const()[name = string("op_1265"), val = tensor([0, 1, 3, 2])]; + tensor var_1267 = const()[name = string("op_1267"), val = tensor([1, 8, 128, 64])]; + tensor var_1268 = reshape(shape = var_1267, x = value_states_31)[name = string("op_1268")]; + tensor var_1269 = const()[name = string("op_1269"), val = tensor([0, 1, 3, 2])]; + tensor x1_21_begin_0 = const()[name = string("x1_21_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_21_end_0 = const()[name = string("x1_21_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_21_end_mask_0 = const()[name = string("x1_21_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_141 = transpose(perm = var_1261, x = var_1260)[name = string("transpose_10")]; + tensor x1_21 = slice_by_index(begin = x1_21_begin_0, end = x1_21_end_0, end_mask = x1_21_end_mask_0, x = x_141)[name = string("x1_21")]; + tensor x2_21_begin_0 = const()[name = string("x2_21_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_21_end_0 = const()[name = string("x2_21_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_21_end_mask_0 = const()[name = string("x2_21_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_21 = slice_by_index(begin = x2_21_begin_0, end = x2_21_end_0, end_mask = x2_21_end_mask_0, x = x_141)[name = string("x2_21")]; + tensor var_1287 = mul(x = x1_21, y = cos_7)[name = string("op_1287")]; + tensor var_1288 = mul(x = x2_21, y = sin_7)[name = string("op_1288")]; + tensor var_1289 = sub(x = var_1287, y = var_1288)[name = string("op_1289")]; + tensor var_1290 = mul(x = x2_21, y = cos_7)[name = string("op_1290")]; + tensor var_1291 = mul(x = x1_21, y = sin_7)[name = string("op_1291")]; + tensor var_1292 = add(x = var_1290, y = var_1291)[name = string("op_1292")]; + bool rotated_21_interleave_0 = const()[name = string("rotated_21_interleave_0"), val = bool(false)]; + tensor rotated_21 = concat(axis = var_46, interleave = rotated_21_interleave_0, values = (var_1289, var_1292))[name = string("rotated_21")]; + tensor x1_23_begin_0 = const()[name = string("x1_23_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_23_end_0 = const()[name = string("x1_23_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_23_end_mask_0 = const()[name = string("x1_23_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_145 = transpose(perm = var_1265, x = var_1264)[name = string("transpose_9")]; + tensor x1_23 = slice_by_index(begin = x1_23_begin_0, end = x1_23_end_0, end_mask = x1_23_end_mask_0, x = x_145)[name = string("x1_23")]; + tensor x2_23_begin_0 = const()[name = string("x2_23_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_23_end_0 = const()[name = string("x2_23_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_23_end_mask_0 = const()[name = string("x2_23_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_23 = slice_by_index(begin = x2_23_begin_0, end = x2_23_end_0, end_mask = x2_23_end_mask_0, x = x_145)[name = string("x2_23")]; + tensor var_1308 = mul(x = x1_23, y = cos_7)[name = string("op_1308")]; + tensor var_1309 = mul(x = x2_23, y = sin_7)[name = string("op_1309")]; + tensor var_1310 = sub(x = var_1308, y = var_1309)[name = string("op_1310")]; + tensor var_1311 = mul(x = x2_23, y = cos_7)[name = string("op_1311")]; + tensor var_1312 = mul(x = x1_23, y = sin_7)[name = string("op_1312")]; + tensor var_1313 = add(x = var_1311, y = var_1312)[name = string("op_1313")]; + bool rotated_23_interleave_0 = const()[name = string("rotated_23_interleave_0"), val = bool(false)]; + tensor rotated_23 = concat(axis = var_46, interleave = rotated_23_interleave_0, values = (var_1310, var_1313))[name = string("rotated_23")]; + tensor expand_dims_60 = const()[name = string("expand_dims_60"), val = tensor([26])]; + tensor expand_dims_61 = const()[name = string("expand_dims_61"), val = tensor([0])]; + tensor expand_dims_63 = const()[name = string("expand_dims_63"), val = tensor([0])]; + tensor expand_dims_64 = const()[name = string("expand_dims_64"), val = tensor([27])]; + int32 concat_92_axis_0 = const()[name = string("concat_92_axis_0"), val = int32(0)]; + bool concat_92_interleave_0 = const()[name = string("concat_92_interleave_0"), val = bool(false)]; + tensor concat_92 = concat(axis = concat_92_axis_0, interleave = concat_92_interleave_0, values = (expand_dims_60, expand_dims_61, current_pos, expand_dims_63))[name = string("concat_92")]; + tensor concat_93_values1_0 = const()[name = string("concat_93_values1_0"), val = tensor([0])]; + tensor concat_93_values3_0 = const()[name = string("concat_93_values3_0"), val = tensor([0])]; + int32 concat_93_axis_0 = const()[name = string("concat_93_axis_0"), val = int32(0)]; + bool concat_93_interleave_0 = const()[name = string("concat_93_interleave_0"), val = bool(false)]; + tensor concat_93 = concat(axis = concat_93_axis_0, interleave = concat_93_interleave_0, values = (expand_dims_64, concat_93_values1_0, var_337, concat_93_values3_0))[name = string("concat_93")]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_11_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_11_cast_fp16 = slice_update(begin = concat_92, begin_mask = model_model_kv_cache_0_internal_tensor_assign_11_begin_mask_0, end = concat_93, end_mask = model_model_kv_cache_0_internal_tensor_assign_11_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_11_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_11_stride_0, update = rotated_23, x = coreml_update_state_23)[name = string("model_model_kv_cache_0_internal_tensor_assign_11_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_11_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_24_write_state")]; + tensor coreml_update_state_24 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_24")]; + tensor expand_dims_66 = const()[name = string("expand_dims_66"), val = tensor([54])]; + tensor expand_dims_67 = const()[name = string("expand_dims_67"), val = tensor([0])]; + tensor expand_dims_69 = const()[name = string("expand_dims_69"), val = tensor([0])]; + tensor expand_dims_70 = const()[name = string("expand_dims_70"), val = tensor([55])]; + int32 concat_96_axis_0 = const()[name = string("concat_96_axis_0"), val = int32(0)]; + bool concat_96_interleave_0 = const()[name = string("concat_96_interleave_0"), val = bool(false)]; + tensor concat_96 = concat(axis = concat_96_axis_0, interleave = concat_96_interleave_0, values = (expand_dims_66, expand_dims_67, current_pos, expand_dims_69))[name = string("concat_96")]; + tensor concat_97_values1_0 = const()[name = string("concat_97_values1_0"), val = tensor([0])]; + tensor concat_97_values3_0 = const()[name = string("concat_97_values3_0"), val = tensor([0])]; + int32 concat_97_axis_0 = const()[name = string("concat_97_axis_0"), val = int32(0)]; + bool concat_97_interleave_0 = const()[name = string("concat_97_interleave_0"), val = bool(false)]; + tensor concat_97 = concat(axis = concat_97_axis_0, interleave = concat_97_interleave_0, values = (expand_dims_70, concat_97_values1_0, var_337, concat_97_values3_0))[name = string("concat_97")]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_12_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_33 = transpose(perm = var_1269, x = var_1268)[name = string("transpose_8")]; + tensor model_model_kv_cache_0_internal_tensor_assign_12_cast_fp16 = slice_update(begin = concat_96, begin_mask = model_model_kv_cache_0_internal_tensor_assign_12_begin_mask_0, end = concat_97, end_mask = model_model_kv_cache_0_internal_tensor_assign_12_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_12_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_12_stride_0, update = value_states_33, x = coreml_update_state_24)[name = string("model_model_kv_cache_0_internal_tensor_assign_12_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_12_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_25_write_state")]; + tensor coreml_update_state_25 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_25")]; + tensor var_1336_begin_0 = const()[name = string("op_1336_begin_0"), val = tensor([26, 0, 0, 0])]; + tensor var_1336_end_0 = const()[name = string("op_1336_end_0"), val = tensor([27, 8, 1024, 128])]; + tensor var_1336_end_mask_0 = const()[name = string("op_1336_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1336_cast_fp16 = slice_by_index(begin = var_1336_begin_0, end = var_1336_end_0, end_mask = var_1336_end_mask_0, x = coreml_update_state_25)[name = string("op_1336_cast_fp16")]; + tensor K_layer_cache_11_axes_0 = const()[name = string("K_layer_cache_11_axes_0"), val = tensor([0])]; + tensor K_layer_cache_11_cast_fp16 = squeeze(axes = K_layer_cache_11_axes_0, x = var_1336_cast_fp16)[name = string("K_layer_cache_11_cast_fp16")]; + tensor var_1338_begin_0 = const()[name = string("op_1338_begin_0"), val = tensor([54, 0, 0, 0])]; + tensor var_1338_end_0 = const()[name = string("op_1338_end_0"), val = tensor([55, 8, 1024, 128])]; + tensor var_1338_end_mask_0 = const()[name = string("op_1338_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1338_cast_fp16 = slice_by_index(begin = var_1338_begin_0, end = var_1338_end_0, end_mask = var_1338_end_mask_0, x = coreml_update_state_25)[name = string("op_1338_cast_fp16")]; + tensor V_layer_cache_11_axes_0 = const()[name = string("V_layer_cache_11_axes_0"), val = tensor([0])]; + tensor V_layer_cache_11_cast_fp16 = squeeze(axes = V_layer_cache_11_axes_0, x = var_1338_cast_fp16)[name = string("V_layer_cache_11_cast_fp16")]; + tensor x_151_axes_0 = const()[name = string("x_151_axes_0"), val = tensor([1])]; + tensor x_151_cast_fp16 = expand_dims(axes = x_151_axes_0, x = K_layer_cache_11_cast_fp16)[name = string("x_151_cast_fp16")]; + tensor var_1347 = const()[name = string("op_1347"), val = tensor([1, 3, 1, 1])]; + tensor x_153_cast_fp16 = tile(reps = var_1347, x = x_151_cast_fp16)[name = string("x_153_cast_fp16")]; + tensor var_1351 = const()[name = string("op_1351"), val = tensor([1, -1, 1024, 128])]; + tensor var_1352_cast_fp16 = reshape(shape = var_1351, x = x_153_cast_fp16)[name = string("op_1352_cast_fp16")]; + tensor x_157_axes_0 = const()[name = string("x_157_axes_0"), val = tensor([1])]; + tensor x_157_cast_fp16 = expand_dims(axes = x_157_axes_0, x = V_layer_cache_11_cast_fp16)[name = string("x_157_cast_fp16")]; + tensor var_1354 = const()[name = string("op_1354"), val = tensor([1, 3, 1, 1])]; + tensor x_159_cast_fp16 = tile(reps = var_1354, x = x_157_cast_fp16)[name = string("x_159_cast_fp16")]; + bool var_1361_transpose_x_0 = const()[name = string("op_1361_transpose_x_0"), val = bool(false)]; + bool var_1361_transpose_y_0 = const()[name = string("op_1361_transpose_y_0"), val = bool(true)]; + tensor var_1361_cast_fp16 = matmul(transpose_x = var_1361_transpose_x_0, transpose_y = var_1361_transpose_y_0, x = rotated_21, y = var_1352_cast_fp16)[name = string("op_1361_cast_fp16")]; + fp16 var_1362_to_fp16 = const()[name = string("op_1362_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_11_cast_fp16 = mul(x = var_1361_cast_fp16, y = var_1362_to_fp16)[name = string("attn_weights_11_cast_fp16")]; + tensor x_161_cast_fp16 = add(x = attn_weights_11_cast_fp16, y = causal_mask)[name = string("x_161_cast_fp16")]; + tensor reduce_max_5_axes_0 = const()[name = string("reduce_max_5_axes_0"), val = tensor([-1])]; + bool reduce_max_5_keep_dims_0 = const()[name = string("reduce_max_5_keep_dims_0"), val = bool(true)]; + tensor reduce_max_5_cast_fp16 = reduce_max(axes = reduce_max_5_axes_0, keep_dims = reduce_max_5_keep_dims_0, x = x_161_cast_fp16)[name = string("reduce_max_5_cast_fp16")]; + tensor x_163_cast_fp16 = sub(x = x_161_cast_fp16, y = reduce_max_5_cast_fp16)[name = string("x_163_cast_fp16")]; + tensor exp_x_11_cast_fp16 = exp(x = x_163_cast_fp16)[name = string("exp_x_11_cast_fp16")]; + tensor var_1373_axes_0 = const()[name = string("op_1373_axes_0"), val = tensor([-1])]; + bool var_1373_keep_dims_0 = const()[name = string("op_1373_keep_dims_0"), val = bool(true)]; + tensor var_1373_cast_fp16 = reduce_sum(axes = var_1373_axes_0, keep_dims = var_1373_keep_dims_0, x = exp_x_11_cast_fp16)[name = string("op_1373_cast_fp16")]; + tensor var_1374_cast_fp16 = real_div(x = exp_x_11_cast_fp16, y = var_1373_cast_fp16)[name = string("op_1374_cast_fp16")]; + tensor concat_102 = const()[name = string("concat_102"), val = tensor([24, 64, 1024])]; + tensor reshape_15_cast_fp16 = reshape(shape = concat_102, x = var_1374_cast_fp16)[name = string("reshape_15_cast_fp16")]; + tensor concat_103 = const()[name = string("concat_103"), val = tensor([24, 1024, 128])]; + tensor reshape_16_cast_fp16 = reshape(shape = concat_103, x = x_159_cast_fp16)[name = string("reshape_16_cast_fp16")]; + bool matmul_5_transpose_x_0 = const()[name = string("matmul_5_transpose_x_0"), val = bool(false)]; + bool matmul_5_transpose_y_0 = const()[name = string("matmul_5_transpose_y_0"), val = bool(false)]; + tensor matmul_5_cast_fp16 = matmul(transpose_x = matmul_5_transpose_x_0, transpose_y = matmul_5_transpose_y_0, x = reshape_15_cast_fp16, y = reshape_16_cast_fp16)[name = string("matmul_5_cast_fp16")]; + tensor concat_107 = const()[name = string("concat_107"), val = tensor([1, 24, 64, 128])]; + tensor reshape_17_cast_fp16 = reshape(shape = concat_107, x = matmul_5_cast_fp16)[name = string("reshape_17_cast_fp16")]; + tensor var_1377_perm_0 = const()[name = string("op_1377_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1379 = const()[name = string("op_1379"), val = tensor([1, 64, 3072])]; + tensor var_1377_cast_fp16 = transpose(perm = var_1377_perm_0, x = reshape_17_cast_fp16)[name = string("transpose_7")]; + tensor input_75_cast_fp16 = reshape(shape = var_1379, x = var_1377_cast_fp16)[name = string("input_75_cast_fp16")]; + tensor model_model_layers_26_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(764951360))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774388608))))[name = string("model_model_layers_26_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_5_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_26_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_75_cast_fp16)[name = string("linear_5_cast_fp16")]; + tensor hidden_states_45_cast_fp16 = add(x = hidden_states_41_cast_fp16, y = linear_5_cast_fp16)[name = string("hidden_states_45_cast_fp16")]; + tensor mean_23_axes_0 = const()[name = string("mean_23_axes_0"), val = tensor([-1])]; + bool mean_23_keep_dims_0 = const()[name = string("mean_23_keep_dims_0"), val = bool(true)]; + tensor mean_23_cast_fp16 = reduce_mean(axes = mean_23_axes_0, keep_dims = mean_23_keep_dims_0, x = hidden_states_45_cast_fp16)[name = string("mean_23_cast_fp16")]; + tensor input_77_cast_fp16 = sub(x = hidden_states_45_cast_fp16, y = mean_23_cast_fp16)[name = string("input_77_cast_fp16")]; + tensor var_1390_axes_0 = const()[name = string("op_1390_axes_0"), val = tensor([-1])]; + tensor model_model_layers_26_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_26_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774585280)))]; + tensor var_1390_cast_fp16 = layer_norm(axes = var_1390_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_26_post_attention_layernorm_weight_to_fp16, x = input_77_cast_fp16)[name = string("op_1390_cast_fp16")]; + tensor var_1397 = const()[name = string("op_1397"), val = tensor([0, 2, 1])]; + tensor input_79_axes_0 = const()[name = string("input_79_axes_0"), val = tensor([2])]; + tensor var_1398 = transpose(perm = var_1397, x = var_1390_cast_fp16)[name = string("transpose_6")]; + tensor input_79 = expand_dims(axes = input_79_axes_0, x = var_1398)[name = string("input_79")]; + string input_81_pad_type_0 = const()[name = string("input_81_pad_type_0"), val = string("valid")]; + tensor input_81_strides_0 = const()[name = string("input_81_strides_0"), val = tensor([1, 1])]; + tensor input_81_pad_0 = const()[name = string("input_81_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor input_81_dilations_0 = const()[name = string("input_81_dilations_0"), val = tensor([1, 1])]; + int32 input_81_groups_0 = const()[name = string("input_81_groups_0"), val = int32(1)]; + tensor input_81 = conv(dilations = input_81_dilations_0, groups = input_81_groups_0, pad = input_81_pad_0, pad_type = input_81_pad_type_0, strides = input_81_strides_0, weight = model_model_layers_26_mlp_gate_proj_weight_palettized, x = input_79)[name = string("input_81")]; + string up_states_pad_type_0 = const()[name = string("up_states_pad_type_0"), val = string("valid")]; + tensor up_states_strides_0 = const()[name = string("up_states_strides_0"), val = tensor([1, 1])]; + tensor up_states_pad_0 = const()[name = string("up_states_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor up_states_dilations_0 = const()[name = string("up_states_dilations_0"), val = tensor([1, 1])]; + int32 up_states_groups_0 = const()[name = string("up_states_groups_0"), val = int32(1)]; + tensor up_states = conv(dilations = up_states_dilations_0, groups = up_states_groups_0, pad = up_states_pad_0, pad_type = up_states_pad_type_0, strides = up_states_strides_0, weight = model_model_layers_26_mlp_up_proj_weight_palettized, x = input_79)[name = string("up_states")]; + tensor gate_states = silu(x = input_81)[name = string("gate_states")]; + tensor input_83 = mul(x = gate_states, y = up_states)[name = string("input_83")]; + string hidden_states_47_pad_type_0 = const()[name = string("hidden_states_47_pad_type_0"), val = string("valid")]; + tensor hidden_states_47_strides_0 = const()[name = string("hidden_states_47_strides_0"), val = tensor([1, 1])]; + tensor hidden_states_47_pad_0 = const()[name = string("hidden_states_47_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor hidden_states_47_dilations_0 = const()[name = string("hidden_states_47_dilations_0"), val = tensor([1, 1])]; + int32 hidden_states_47_groups_0 = const()[name = string("hidden_states_47_groups_0"), val = int32(1)]; + tensor hidden_states_47 = conv(dilations = hidden_states_47_dilations_0, groups = hidden_states_47_groups_0, pad = hidden_states_47_pad_0, pad_type = hidden_states_47_pad_type_0, strides = hidden_states_47_strides_0, weight = model_model_layers_26_mlp_down_proj_weight_palettized, x = input_83)[name = string("hidden_states_47")]; + tensor var_1420_axes_0 = const()[name = string("op_1420_axes_0"), val = tensor([2])]; + tensor var_1420 = squeeze(axes = var_1420_axes_0, x = hidden_states_47)[name = string("op_1420")]; + tensor var_1421 = const()[name = string("op_1421"), val = tensor([0, 2, 1])]; + tensor var_1422 = transpose(perm = var_1421, x = var_1420)[name = string("transpose_5")]; + tensor hidden_states_49_cast_fp16 = add(x = hidden_states_45_cast_fp16, y = var_1422)[name = string("hidden_states_49_cast_fp16")]; + tensor mean_axes_0 = const()[name = string("mean_axes_0"), val = tensor([-1])]; + bool mean_keep_dims_0 = const()[name = string("mean_keep_dims_0"), val = bool(true)]; + tensor mean_cast_fp16 = reduce_mean(axes = mean_axes_0, keep_dims = mean_keep_dims_0, x = hidden_states_49_cast_fp16)[name = string("mean_cast_fp16")]; + tensor input_85_cast_fp16 = sub(x = hidden_states_49_cast_fp16, y = mean_cast_fp16)[name = string("input_85_cast_fp16")]; + tensor var_1430_axes_0 = const()[name = string("op_1430_axes_0"), val = tensor([-1])]; + tensor model_model_layers_27_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_27_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774591488)))]; + tensor var_1430_cast_fp16 = layer_norm(axes = var_1430_axes_0, epsilon = var_48_to_fp16, gamma = model_model_layers_27_input_layernorm_weight_to_fp16, x = input_85_cast_fp16)[name = string("op_1430_cast_fp16")]; + tensor var_1434 = const()[name = string("op_1434"), val = tensor([0, 2, 1])]; + tensor var_1436_axes_0 = const()[name = string("op_1436_axes_0"), val = tensor([2])]; + tensor var_1435 = transpose(perm = var_1434, x = var_1430_cast_fp16)[name = string("transpose_4")]; + tensor var_1436 = expand_dims(axes = var_1436_axes_0, x = var_1435)[name = string("op_1436")]; + string query_states_25_pad_type_0 = const()[name = string("query_states_25_pad_type_0"), val = string("valid")]; + tensor query_states_25_strides_0 = const()[name = string("query_states_25_strides_0"), val = tensor([1, 1])]; + tensor query_states_25_pad_0 = const()[name = string("query_states_25_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor query_states_25_dilations_0 = const()[name = string("query_states_25_dilations_0"), val = tensor([1, 1])]; + int32 query_states_25_groups_0 = const()[name = string("query_states_25_groups_0"), val = int32(1)]; + tensor query_states_25 = conv(dilations = query_states_25_dilations_0, groups = query_states_25_groups_0, pad = query_states_25_pad_0, pad_type = query_states_25_pad_type_0, strides = query_states_25_strides_0, weight = model_model_layers_27_self_attn_q_proj_weight_palettized, x = var_1436)[name = string("query_states_25")]; + string key_states_37_pad_type_0 = const()[name = string("key_states_37_pad_type_0"), val = string("valid")]; + tensor key_states_37_strides_0 = const()[name = string("key_states_37_strides_0"), val = tensor([1, 1])]; + tensor key_states_37_pad_0 = const()[name = string("key_states_37_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor key_states_37_dilations_0 = const()[name = string("key_states_37_dilations_0"), val = tensor([1, 1])]; + int32 key_states_37_groups_0 = const()[name = string("key_states_37_groups_0"), val = int32(1)]; + tensor key_states_37 = conv(dilations = key_states_37_dilations_0, groups = key_states_37_groups_0, pad = key_states_37_pad_0, pad_type = key_states_37_pad_type_0, strides = key_states_37_strides_0, weight = model_model_layers_27_self_attn_k_proj_weight_palettized, x = var_1436)[name = string("key_states_37")]; + string value_states_37_pad_type_0 = const()[name = string("value_states_37_pad_type_0"), val = string("valid")]; + tensor value_states_37_strides_0 = const()[name = string("value_states_37_strides_0"), val = tensor([1, 1])]; + tensor value_states_37_pad_0 = const()[name = string("value_states_37_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor value_states_37_dilations_0 = const()[name = string("value_states_37_dilations_0"), val = tensor([1, 1])]; + int32 value_states_37_groups_0 = const()[name = string("value_states_37_groups_0"), val = int32(1)]; + tensor value_states_37 = conv(dilations = value_states_37_dilations_0, groups = value_states_37_groups_0, pad = value_states_37_pad_0, pad_type = value_states_37_pad_type_0, strides = value_states_37_strides_0, weight = model_model_layers_27_self_attn_v_proj_weight_palettized, x = var_1436)[name = string("value_states_37")]; + tensor var_1456 = const()[name = string("op_1456"), val = tensor([1, 24, 128, 64])]; + tensor var_1457 = reshape(shape = var_1456, x = query_states_25)[name = string("op_1457")]; + tensor var_1458 = const()[name = string("op_1458"), val = tensor([0, 1, 3, 2])]; + tensor var_1460 = const()[name = string("op_1460"), val = tensor([1, 8, 128, 64])]; + tensor var_1461 = reshape(shape = var_1460, x = key_states_37)[name = string("op_1461")]; + tensor var_1462 = const()[name = string("op_1462"), val = tensor([0, 1, 3, 2])]; + tensor var_1464 = const()[name = string("op_1464"), val = tensor([1, 8, 128, 64])]; + tensor var_1465 = reshape(shape = var_1464, x = value_states_37)[name = string("op_1465")]; + tensor var_1466 = const()[name = string("op_1466"), val = tensor([0, 1, 3, 2])]; + tensor x1_25_begin_0 = const()[name = string("x1_25_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_25_end_0 = const()[name = string("x1_25_end_0"), val = tensor([1, 24, 64, 64])]; + tensor x1_25_end_mask_0 = const()[name = string("x1_25_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_169 = transpose(perm = var_1458, x = var_1457)[name = string("transpose_3")]; + tensor x1_25 = slice_by_index(begin = x1_25_begin_0, end = x1_25_end_0, end_mask = x1_25_end_mask_0, x = x_169)[name = string("x1_25")]; + tensor x2_25_begin_0 = const()[name = string("x2_25_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_25_end_0 = const()[name = string("x2_25_end_0"), val = tensor([1, 24, 64, 128])]; + tensor x2_25_end_mask_0 = const()[name = string("x2_25_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_25 = slice_by_index(begin = x2_25_begin_0, end = x2_25_end_0, end_mask = x2_25_end_mask_0, x = x_169)[name = string("x2_25")]; + tensor var_1484 = mul(x = x1_25, y = cos_7)[name = string("op_1484")]; + tensor var_1485 = mul(x = x2_25, y = sin_7)[name = string("op_1485")]; + tensor var_1486 = sub(x = var_1484, y = var_1485)[name = string("op_1486")]; + tensor var_1487 = mul(x = x2_25, y = cos_7)[name = string("op_1487")]; + tensor var_1488 = mul(x = x1_25, y = sin_7)[name = string("op_1488")]; + tensor var_1489 = add(x = var_1487, y = var_1488)[name = string("op_1489")]; + bool rotated_25_interleave_0 = const()[name = string("rotated_25_interleave_0"), val = bool(false)]; + tensor rotated_25 = concat(axis = var_46, interleave = rotated_25_interleave_0, values = (var_1486, var_1489))[name = string("rotated_25")]; + tensor x1_begin_0 = const()[name = string("x1_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_end_0 = const()[name = string("x1_end_0"), val = tensor([1, 8, 64, 64])]; + tensor x1_end_mask_0 = const()[name = string("x1_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x_173 = transpose(perm = var_1462, x = var_1461)[name = string("transpose_2")]; + tensor x1 = slice_by_index(begin = x1_begin_0, end = x1_end_0, end_mask = x1_end_mask_0, x = x_173)[name = string("x1")]; + tensor x2_begin_0 = const()[name = string("x2_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_end_0 = const()[name = string("x2_end_0"), val = tensor([1, 8, 64, 128])]; + tensor x2_end_mask_0 = const()[name = string("x2_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2 = slice_by_index(begin = x2_begin_0, end = x2_end_0, end_mask = x2_end_mask_0, x = x_173)[name = string("x2")]; + tensor var_1505 = mul(x = x1, y = cos_7)[name = string("op_1505")]; + tensor var_1506 = mul(x = x2, y = sin_7)[name = string("op_1506")]; + tensor var_1507 = sub(x = var_1505, y = var_1506)[name = string("op_1507")]; + tensor var_1508 = mul(x = x2, y = cos_7)[name = string("op_1508")]; + tensor var_1509 = mul(x = x1, y = sin_7)[name = string("op_1509")]; + tensor var_1510 = add(x = var_1508, y = var_1509)[name = string("op_1510")]; + bool rotated_interleave_0 = const()[name = string("rotated_interleave_0"), val = bool(false)]; + tensor rotated = concat(axis = var_46, interleave = rotated_interleave_0, values = (var_1507, var_1510))[name = string("rotated")]; + tensor expand_dims_72 = const()[name = string("expand_dims_72"), val = tensor([27])]; + tensor expand_dims_73 = const()[name = string("expand_dims_73"), val = tensor([0])]; + tensor expand_dims_75 = const()[name = string("expand_dims_75"), val = tensor([0])]; + tensor expand_dims_76 = const()[name = string("expand_dims_76"), val = tensor([28])]; + int32 concat_110_axis_0 = const()[name = string("concat_110_axis_0"), val = int32(0)]; + bool concat_110_interleave_0 = const()[name = string("concat_110_interleave_0"), val = bool(false)]; + tensor concat_110 = concat(axis = concat_110_axis_0, interleave = concat_110_interleave_0, values = (expand_dims_72, expand_dims_73, current_pos, expand_dims_75))[name = string("concat_110")]; + tensor concat_111_values1_0 = const()[name = string("concat_111_values1_0"), val = tensor([0])]; + tensor concat_111_values3_0 = const()[name = string("concat_111_values3_0"), val = tensor([0])]; + int32 concat_111_axis_0 = const()[name = string("concat_111_axis_0"), val = int32(0)]; + bool concat_111_interleave_0 = const()[name = string("concat_111_interleave_0"), val = bool(false)]; + tensor concat_111 = concat(axis = concat_111_axis_0, interleave = concat_111_interleave_0, values = (expand_dims_76, concat_111_values1_0, var_337, concat_111_values3_0))[name = string("concat_111")]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_13_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_13_cast_fp16 = slice_update(begin = concat_110, begin_mask = model_model_kv_cache_0_internal_tensor_assign_13_begin_mask_0, end = concat_111, end_mask = model_model_kv_cache_0_internal_tensor_assign_13_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_13_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_13_stride_0, update = rotated, x = coreml_update_state_25)[name = string("model_model_kv_cache_0_internal_tensor_assign_13_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_13_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_26_write_state")]; + tensor coreml_update_state_26 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_26")]; + tensor expand_dims_78 = const()[name = string("expand_dims_78"), val = tensor([55])]; + tensor expand_dims_79 = const()[name = string("expand_dims_79"), val = tensor([0])]; + tensor expand_dims_81 = const()[name = string("expand_dims_81"), val = tensor([0])]; + tensor expand_dims_82 = const()[name = string("expand_dims_82"), val = tensor([56])]; + int32 concat_114_axis_0 = const()[name = string("concat_114_axis_0"), val = int32(0)]; + bool concat_114_interleave_0 = const()[name = string("concat_114_interleave_0"), val = bool(false)]; + tensor concat_114 = concat(axis = concat_114_axis_0, interleave = concat_114_interleave_0, values = (expand_dims_78, expand_dims_79, current_pos, expand_dims_81))[name = string("concat_114")]; + tensor concat_115_values1_0 = const()[name = string("concat_115_values1_0"), val = tensor([0])]; + tensor concat_115_values3_0 = const()[name = string("concat_115_values3_0"), val = tensor([0])]; + int32 concat_115_axis_0 = const()[name = string("concat_115_axis_0"), val = int32(0)]; + bool concat_115_interleave_0 = const()[name = string("concat_115_interleave_0"), val = bool(false)]; + tensor concat_115 = concat(axis = concat_115_axis_0, interleave = concat_115_interleave_0, values = (expand_dims_82, concat_115_values1_0, var_337, concat_115_values3_0))[name = string("concat_115")]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_stride_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_stride_0"), val = tensor([1, 1, 1, 1])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_begin_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_begin_mask_0"), val = tensor([false, false, false, false])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_end_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_end_mask_0"), val = tensor([false, true, false, true])]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_squeeze_mask_0 = const()[name = string("model_model_kv_cache_0_internal_tensor_assign_14_squeeze_mask_0"), val = tensor([false, false, false, false])]; + tensor value_states_39 = transpose(perm = var_1466, x = var_1465)[name = string("transpose_1")]; + tensor model_model_kv_cache_0_internal_tensor_assign_14_cast_fp16 = slice_update(begin = concat_114, begin_mask = model_model_kv_cache_0_internal_tensor_assign_14_begin_mask_0, end = concat_115, end_mask = model_model_kv_cache_0_internal_tensor_assign_14_end_mask_0, squeeze_mask = model_model_kv_cache_0_internal_tensor_assign_14_squeeze_mask_0, stride = model_model_kv_cache_0_internal_tensor_assign_14_stride_0, update = value_states_39, x = coreml_update_state_26)[name = string("model_model_kv_cache_0_internal_tensor_assign_14_cast_fp16")]; + write_state(data = model_model_kv_cache_0_internal_tensor_assign_14_cast_fp16, input = model_model_kv_cache_0)[name = string("coreml_update_state_27_write_state")]; + tensor coreml_update_state_27 = read_state(input = model_model_kv_cache_0)[name = string("coreml_update_state_27")]; + tensor var_1533_begin_0 = const()[name = string("op_1533_begin_0"), val = tensor([27, 0, 0, 0])]; + tensor var_1533_end_0 = const()[name = string("op_1533_end_0"), val = tensor([28, 8, 1024, 128])]; + tensor var_1533_end_mask_0 = const()[name = string("op_1533_end_mask_0"), val = tensor([false, true, true, true])]; + tensor var_1533_cast_fp16 = slice_by_index(begin = var_1533_begin_0, end = var_1533_end_0, end_mask = var_1533_end_mask_0, x = coreml_update_state_27)[name = string("op_1533_cast_fp16")]; + tensor K_layer_cache_axes_0 = const()[name = string("K_layer_cache_axes_0"), val = tensor([0])]; + tensor K_layer_cache_cast_fp16 = squeeze(axes = K_layer_cache_axes_0, x = var_1533_cast_fp16)[name = string("K_layer_cache_cast_fp16")]; + tensor var_1535_begin_0 = const()[name = string("op_1535_begin_0"), val = tensor([55, 0, 0, 0])]; + tensor var_1535_end_0 = const()[name = string("op_1535_end_0"), val = tensor([1, 8, 1024, 128])]; + tensor var_1535_end_mask_0 = const()[name = string("op_1535_end_mask_0"), val = tensor([true, true, true, true])]; + tensor var_1535_cast_fp16 = slice_by_index(begin = var_1535_begin_0, end = var_1535_end_0, end_mask = var_1535_end_mask_0, x = coreml_update_state_27)[name = string("op_1535_cast_fp16")]; + tensor V_layer_cache_axes_0 = const()[name = string("V_layer_cache_axes_0"), val = tensor([0])]; + tensor V_layer_cache_cast_fp16 = squeeze(axes = V_layer_cache_axes_0, x = var_1535_cast_fp16)[name = string("V_layer_cache_cast_fp16")]; + tensor x_179_axes_0 = const()[name = string("x_179_axes_0"), val = tensor([1])]; + tensor x_179_cast_fp16 = expand_dims(axes = x_179_axes_0, x = K_layer_cache_cast_fp16)[name = string("x_179_cast_fp16")]; + tensor var_1544 = const()[name = string("op_1544"), val = tensor([1, 3, 1, 1])]; + tensor x_181_cast_fp16 = tile(reps = var_1544, x = x_179_cast_fp16)[name = string("x_181_cast_fp16")]; + tensor var_1548 = const()[name = string("op_1548"), val = tensor([1, -1, 1024, 128])]; + tensor var_1549_cast_fp16 = reshape(shape = var_1548, x = x_181_cast_fp16)[name = string("op_1549_cast_fp16")]; + tensor x_185_axes_0 = const()[name = string("x_185_axes_0"), val = tensor([1])]; + tensor x_185_cast_fp16 = expand_dims(axes = x_185_axes_0, x = V_layer_cache_cast_fp16)[name = string("x_185_cast_fp16")]; + tensor var_1551 = const()[name = string("op_1551"), val = tensor([1, 3, 1, 1])]; + tensor x_187_cast_fp16 = tile(reps = var_1551, x = x_185_cast_fp16)[name = string("x_187_cast_fp16")]; + bool var_1558_transpose_x_0 = const()[name = string("op_1558_transpose_x_0"), val = bool(false)]; + bool var_1558_transpose_y_0 = const()[name = string("op_1558_transpose_y_0"), val = bool(true)]; + tensor var_1558_cast_fp16 = matmul(transpose_x = var_1558_transpose_x_0, transpose_y = var_1558_transpose_y_0, x = rotated_25, y = var_1549_cast_fp16)[name = string("op_1558_cast_fp16")]; + fp16 var_1559_to_fp16 = const()[name = string("op_1559_to_fp16"), val = fp16(0x1.6ap-4)]; + tensor attn_weights_cast_fp16 = mul(x = var_1558_cast_fp16, y = var_1559_to_fp16)[name = string("attn_weights_cast_fp16")]; + tensor x_189_cast_fp16 = add(x = attn_weights_cast_fp16, y = causal_mask)[name = string("x_189_cast_fp16")]; + tensor reduce_max_6_axes_0 = const()[name = string("reduce_max_6_axes_0"), val = tensor([-1])]; + bool reduce_max_6_keep_dims_0 = const()[name = string("reduce_max_6_keep_dims_0"), val = bool(true)]; + tensor reduce_max_6_cast_fp16 = reduce_max(axes = reduce_max_6_axes_0, keep_dims = reduce_max_6_keep_dims_0, x = x_189_cast_fp16)[name = string("reduce_max_6_cast_fp16")]; + tensor x_cast_fp16 = sub(x = x_189_cast_fp16, y = reduce_max_6_cast_fp16)[name = string("x_cast_fp16")]; + tensor exp_x_cast_fp16 = exp(x = x_cast_fp16)[name = string("exp_x_cast_fp16")]; + tensor var_1570_axes_0 = const()[name = string("op_1570_axes_0"), val = tensor([-1])]; + bool var_1570_keep_dims_0 = const()[name = string("op_1570_keep_dims_0"), val = bool(true)]; + tensor var_1570_cast_fp16 = reduce_sum(axes = var_1570_axes_0, keep_dims = var_1570_keep_dims_0, x = exp_x_cast_fp16)[name = string("op_1570_cast_fp16")]; + tensor var_1571_cast_fp16 = real_div(x = exp_x_cast_fp16, y = var_1570_cast_fp16)[name = string("op_1571_cast_fp16")]; + tensor concat_120 = const()[name = string("concat_120"), val = tensor([24, 64, 1024])]; + tensor reshape_18_cast_fp16 = reshape(shape = concat_120, x = var_1571_cast_fp16)[name = string("reshape_18_cast_fp16")]; + tensor concat_121 = const()[name = string("concat_121"), val = tensor([24, 1024, 128])]; + tensor reshape_19_cast_fp16 = reshape(shape = concat_121, x = x_187_cast_fp16)[name = string("reshape_19_cast_fp16")]; + bool matmul_6_transpose_x_0 = const()[name = string("matmul_6_transpose_x_0"), val = bool(false)]; + bool matmul_6_transpose_y_0 = const()[name = string("matmul_6_transpose_y_0"), val = bool(false)]; + tensor matmul_6_cast_fp16 = matmul(transpose_x = matmul_6_transpose_x_0, transpose_y = matmul_6_transpose_y_0, x = reshape_18_cast_fp16, y = reshape_19_cast_fp16)[name = string("matmul_6_cast_fp16")]; + tensor concat_125 = const()[name = string("concat_125"), val = tensor([1, 24, 64, 128])]; + tensor reshape_20_cast_fp16 = reshape(shape = concat_125, x = matmul_6_cast_fp16)[name = string("reshape_20_cast_fp16")]; + tensor var_1574_perm_0 = const()[name = string("op_1574_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_1576 = const()[name = string("op_1576"), val = tensor([1, 64, 3072])]; + tensor var_1574_cast_fp16 = transpose(perm = var_1574_perm_0, x = reshape_20_cast_fp16)[name = string("transpose_0")]; + tensor input_cast_fp16 = reshape(shape = var_1576, x = var_1574_cast_fp16)[name = string("input_cast_fp16")]; + tensor model_model_layers_27_self_attn_o_proj_weight_promoted_to_fp16_palettized = constexpr_lut_to_dense(indices = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(774597696))), lut = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(784034944))))[name = string("model_model_layers_27_self_attn_o_proj_weight_promoted_to_fp16_palettized")]; + tensor linear_6_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_27_self_attn_o_proj_weight_promoted_to_fp16_palettized, x = input_cast_fp16)[name = string("linear_6_cast_fp16")]; + tensor hidden_states_cast_fp16 = add(x = hidden_states_49_cast_fp16, y = linear_6_cast_fp16)[name = string("hidden_states_cast_fp16")]; + tensor var_1582_begin_0 = const()[name = string("op_1582_begin_0"), val = tensor([0, 0, 0])]; + tensor var_1582_end_0 = const()[name = string("op_1582_end_0"), val = tensor([1, 1, 3072])]; + tensor var_1582_end_mask_0 = const()[name = string("op_1582_end_mask_0"), val = tensor([true, false, true])]; + tensor output_hidden_states = slice_by_index(begin = var_1582_begin_0, end = var_1582_end_0, end_mask = var_1582_end_mask_0, x = hidden_states_cast_fp16)[name = string("op_1582_cast_fp16")]; + } -> (output_hidden_states); +} \ No newline at end of file