--- license: apache-2.0 base_model: yhavinga/t5-base-dutch tags: - summarization dutch for keyword extraction from new - generated_from_trainer metrics: - rouge model-index: - name: t5-base-dutch-finetuned-mt5_base_keyword_extraction_dutch results: [] --- # t5-base-dutch-finetuned-mt5_base_keyword_extraction_dutch This model is a fine-tuned version of [yhavinga/t5-base-dutch](https://huggingface.co/yhavinga/t5-base-dutch) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6065 - Rouge1: 0.7675 - Rouge2: 0.5965 - Rougel: 0.7531 - Rougelsum: 0.7534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 94 | 1.2820 | 0.4332 | 0.3007 | 0.4175 | 0.4174 | | 1.4828 | 2.0 | 188 | 0.9360 | 0.6075 | 0.4541 | 0.5916 | 0.5912 | | 1.4828 | 3.0 | 282 | 0.7435 | 0.6542 | 0.4825 | 0.6358 | 0.6366 | | 0.7633 | 4.0 | 376 | 0.6623 | 0.6867 | 0.5071 | 0.6692 | 0.6697 | | 0.7633 | 5.0 | 470 | 0.6481 | 0.7061 | 0.5254 | 0.6909 | 0.6913 | | 0.5935 | 6.0 | 564 | 0.6456 | 0.7155 | 0.5367 | 0.6984 | 0.6995 | | 0.5935 | 7.0 | 658 | 0.6387 | 0.7162 | 0.5388 | 0.6993 | 0.7001 | | 0.5101 | 8.0 | 752 | 0.6341 | 0.7247 | 0.5495 | 0.7086 | 0.7102 | | 0.5101 | 9.0 | 846 | 0.6306 | 0.7335 | 0.5527 | 0.7166 | 0.7176 | | 0.4449 | 10.0 | 940 | 0.6412 | 0.7324 | 0.5559 | 0.7160 | 0.7166 | | 0.4449 | 11.0 | 1034 | 0.6439 | 0.7273 | 0.5513 | 0.7126 | 0.7136 | | 0.4001 | 12.0 | 1128 | 0.6294 | 0.7415 | 0.5644 | 0.7266 | 0.7268 | | 0.4001 | 13.0 | 1222 | 0.6252 | 0.7447 | 0.5658 | 0.7294 | 0.7296 | | 0.3589 | 14.0 | 1316 | 0.6257 | 0.7490 | 0.5743 | 0.7341 | 0.7347 | | 0.3589 | 15.0 | 1410 | 0.6132 | 0.7474 | 0.5751 | 0.7339 | 0.7346 | | 0.3263 | 16.0 | 1504 | 0.6119 | 0.7616 | 0.5858 | 0.7469 | 0.7470 | | 0.3263 | 17.0 | 1598 | 0.6088 | 0.7674 | 0.5945 | 0.7527 | 0.7530 | | 0.2989 | 18.0 | 1692 | 0.6108 | 0.7655 | 0.5917 | 0.7510 | 0.7514 | | 0.2989 | 19.0 | 1786 | 0.6020 | 0.7681 | 0.5961 | 0.7539 | 0.7545 | | 0.2846 | 20.0 | 1880 | 0.6065 | 0.7675 | 0.5965 | 0.7531 | 0.7534 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2