File size: 2,981 Bytes
580b278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7737681
d570c2c
 
7737681
 
 
 
 
 
 
 
 
88a5572
7737681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---

# Uploaded  model

- **Developed by:** atsunobu
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

# 2.92

以下は、elyza-tasks-100-TV_0.jsonlの回答のためのコードです。

必要なライブラリをインストール
%%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft

必要なライブラリを読み込み
from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re HF_TOKEN = "your-token"

ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。
model_id = "llm-jp/llm-jp-3-13b" adapter_id = "atsunobu/llm-jp-3-13b-FineTuning-r40_2024-12-03-1000_lora"

unslothのFastLanguageModelで元のモデルをロード。
dtype = None # Noneにしておけば自動で設定 load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, )

元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

タスクとなるデータの読み込み。
事前にデータをアップロードしてください。
datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

モデルを用いてタスクの推論。
推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

結果をjsonlで保存。
ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。
json_file_id = re.sub(".*/", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')