--- license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: kaggle-math results: [] --- # kaggle-math This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6024 - Accuracy: 0.8204 - F1: 0.8204 - Precision: 0.8204 - Recall: 0.8204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6125 | 1.0 | 680 | 0.8193 | 0.7782 | 0.7782 | 0.7782 | 0.7782 | | 0.5557 | 2.0 | 1360 | 0.6190 | 0.7998 | 0.7998 | 0.7998 | 0.7998 | | 0.4949 | 3.0 | 2040 | 0.6024 | 0.8204 | 0.8204 | 0.8204 | 0.8204 | ### Framework versions - Transformers 4.38.0 - Pytorch 2.5.1+cu118 - Datasets 3.2.0 - Tokenizers 0.15.2