Upload 5 files
Browse files- .gitattributes +2 -0
- README.md +9 -0
- app.py +383 -0
- assets/example_depth.png +3 -0
- assets/example_rgb.jpg +3 -0
- requirements.txt +6 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/example_depth.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/example_rgb.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Geometry Prior Visualization Demo
|
2 |
+
|
3 |
+
This demo shows the visualization of geometry priors from RGB and depth images.
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
Upload an RGB image and a depth image to see the visualization result.
|
7 |
+
|
8 |
+
## Examples
|
9 |
+
The demo includes example images from the NYUDepthv2 dataset.
|
app.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.nn as nn
|
7 |
+
from torchvision.transforms.functional import to_pil_image
|
8 |
+
from torchvision.transforms import Resize
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
from torchcam.utils import overlay_mask
|
12 |
+
import gradio as gr
|
13 |
+
import os
|
14 |
+
|
15 |
+
class GeoPrior(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, embed_dim=128, num_heads=4, initial_value=2, heads_range=6):
|
18 |
+
super().__init__()
|
19 |
+
angle = 1.0 / (10000 ** torch.linspace(0, 1, embed_dim // num_heads // 2))
|
20 |
+
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
|
21 |
+
self.initial_value = initial_value
|
22 |
+
self.heads_range = heads_range
|
23 |
+
self.num_heads = num_heads
|
24 |
+
decay = torch.log(1 - 2 ** (-initial_value - heads_range * torch.arange(num_heads, dtype=torch.float) / num_heads))
|
25 |
+
self.register_buffer('angle', angle)
|
26 |
+
self.register_buffer('decay', decay)
|
27 |
+
|
28 |
+
def generate_pos_decay(self, H: int, W: int):
|
29 |
+
'''
|
30 |
+
generate 2d decay mask, the result is (HW)*(HW)
|
31 |
+
'''
|
32 |
+
index_h = torch.arange(H).to(self.decay) #保持一個類型
|
33 |
+
index_w = torch.arange(W).to(self.decay) #
|
34 |
+
grid = torch.meshgrid([index_h, index_w])
|
35 |
+
grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
|
36 |
+
mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
|
37 |
+
mask = (mask.abs()).sum(dim=-1)
|
38 |
+
mask = mask #* self.decay[:, None, None] #(n H*W H*W)
|
39 |
+
return mask
|
40 |
+
|
41 |
+
def generate_2d_depth_decay(self, H: int, W: int, depth_grid):
|
42 |
+
'''
|
43 |
+
generate 2d decay mask, the result is (HW)*(HW)
|
44 |
+
'''
|
45 |
+
# index_h = torch.arange(H).to(self.decay) #保持一個類型
|
46 |
+
# index_w = torch.arange(W).to(self.decay) #
|
47 |
+
# grid = torch.meshgrid([index_h, index_w])
|
48 |
+
# grid = torch.stack(grid, dim=-1).reshape(H*W, 2) #(H*W 2)
|
49 |
+
# to do: resize depth_grid to H,W
|
50 |
+
# print(depth_grid.shape,H,W,'2d')
|
51 |
+
B,_,H,W = depth_grid.shape
|
52 |
+
grid_d = depth_grid.reshape(B, H*W, 1)
|
53 |
+
print(grid_d.dtype,'aaaaaaaaaaaaaaaaaa')
|
54 |
+
# exit()
|
55 |
+
mask_d = grid_d[:, :, None, :] - grid_d[:, None,:, :] #(H*W H*W)
|
56 |
+
# mask = grid[:, None, :] - grid[None, :, :] #(H*W H*W 2)
|
57 |
+
# print(mask_d.shape, self.decay[None, :, None, None].shape,'11111')
|
58 |
+
mask_d = (mask_d.abs()).sum(dim=-1)
|
59 |
+
# print(torch.max(mask_d),torch.min(mask_d))
|
60 |
+
# exit()
|
61 |
+
mask_d = mask_d.unsqueeze(1) #* self.decay[None, :, None, None].cpu() #(n H*W H*W)
|
62 |
+
return mask_d
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def forward(self, slen, depth_map, activate_recurrent=False, chunkwise_recurrent=False):
|
67 |
+
'''
|
68 |
+
slen: (h, w)
|
69 |
+
h * w == l
|
70 |
+
recurrent is not implemented
|
71 |
+
'''
|
72 |
+
# print(depth_map.shape,'depth_map')
|
73 |
+
depth_map = F.interpolate(depth_map, size=slen,mode='bilinear',align_corners=False)
|
74 |
+
# print(depth_map.shape,'downsampled')
|
75 |
+
depth_map = depth_map.float()
|
76 |
+
# depth_map = Resize(slen[0],slen[1])(depth_map).reshape(slen[0],slen[1])
|
77 |
+
|
78 |
+
index = torch.arange(slen[0]*slen[1]).to(self.decay)
|
79 |
+
sin = torch.sin(index[:, None] * self.angle[None, :]) #(l d1)
|
80 |
+
sin = sin.reshape(slen[0], slen[1], -1) #(h w d1)
|
81 |
+
cos = torch.cos(index[:, None] * self.angle[None, :]) #(l d1)
|
82 |
+
cos = cos.reshape(slen[0], slen[1], -1) #(h w d1)
|
83 |
+
mask_1 = self.generate_pos_decay(slen[0], slen[1]) #(n l l)
|
84 |
+
mask_d = self.generate_2d_depth_decay(slen[0], slen[1], depth_map)
|
85 |
+
print(torch.max(mask_d),torch.min(mask_d),'-2')
|
86 |
+
mask = mask_d#/torch.max(mask_d, dim=0)[0] #mask.cpu() * (2*(1-
|
87 |
+
mask_sum = (0.85*mask_1.cpu()+0.15*mask) * self.decay[:, None, None].cpu()
|
88 |
+
retention_rel_pos = ((sin, cos), mask, mask_1, mask_sum)
|
89 |
+
print(mask.shape,mask_1.shape)
|
90 |
+
# exit()
|
91 |
+
|
92 |
+
return retention_rel_pos
|
93 |
+
|
94 |
+
def fangda(mask, in_size=(480//20,640//20), out_size=(480,640)):
|
95 |
+
new_mask = torch.zeros(out_size)
|
96 |
+
ratio_h, ratio_w = out_size[0]//in_size[0], out_size[1]//in_size[1]
|
97 |
+
for i in range(in_size[0]):
|
98 |
+
for j in range(in_size[1]):
|
99 |
+
new_mask[i*ratio_h:(i+1)*ratio_h,j*ratio_w:(j+1)*ratio_w]=mask[i,j]
|
100 |
+
return new_mask
|
101 |
+
|
102 |
+
def put_mask(image,mask,color_rgb=None,border_mask=False,color_temp='jet',num_c='',beta=2,fixed_num=None):
|
103 |
+
mask = mask.numpy()
|
104 |
+
image = cv2.resize(image,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
105 |
+
mask = cv2.resize(mask,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
106 |
+
color=np.zeros((1,1,3), dtype=np.uint8)
|
107 |
+
if color_rgb is not None:
|
108 |
+
color[0,0,2],color[0,0,1],color[0,0,0]=color_rgb
|
109 |
+
else:
|
110 |
+
color[0, 0, 2], color[0, 0, 1], color[0, 0, 0]=120,86,87
|
111 |
+
if fixed_num is not None:
|
112 |
+
mask = ((1-mask/255))
|
113 |
+
else:
|
114 |
+
mask=(1-mask/np.max(mask))#*0.5+0.5
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
result = overlay_mask(to_pil_image(image.astype(np.uint8)), to_pil_image(mask), colormap = color_temp, alpha=0.4)
|
120 |
+
|
121 |
+
|
122 |
+
return np.array(result)
|
123 |
+
|
124 |
+
|
125 |
+
def visualize_geometry_prior(RGB_path, Depth_path, index_list=[[584]], cmap_list = ['jet_r'],x=0,y=0):
|
126 |
+
|
127 |
+
H = 480//20
|
128 |
+
W = 640//20
|
129 |
+
index_num = int(x//20)+int((y//20+1)*32)
|
130 |
+
index_list = [[index_num]]
|
131 |
+
print(index_num)
|
132 |
+
|
133 |
+
grid_d = cv2.imread(Depth_path,0)
|
134 |
+
# return grid_d
|
135 |
+
grid_d = cv2.resize(grid_d,dsize=(W,H),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
136 |
+
|
137 |
+
grid_d = torch.tensor(grid_d).reshape(1,1,H,W)
|
138 |
+
grid_d_copy=cv2.imread(Depth_path)
|
139 |
+
grid_d_copy = cv2.resize(grid_d_copy,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
140 |
+
grid_d_copy_gray = cv2.imread(Depth_path,0)
|
141 |
+
grid_d_copy_gray = cv2.resize(grid_d_copy_gray,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
142 |
+
print('min max', torch.max(grid_d), torch.min(grid_d))
|
143 |
+
print(grid_d.shape)
|
144 |
+
grid_d=grid_d.cpu()
|
145 |
+
|
146 |
+
respos = GeoPrior()
|
147 |
+
((sin,cos), depth_map, mask_1, mask_sum) = respos((H,W), grid_d)
|
148 |
+
print(depth_map.shape, mask_1.shape,'-1')
|
149 |
+
print(torch.max(depth_map),torch.min(depth_map))
|
150 |
+
|
151 |
+
#
|
152 |
+
img_path = RGB_path
|
153 |
+
img = cv2.imread(img_path)
|
154 |
+
img = cv2.resize(img,dsize=(640,480),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
155 |
+
|
156 |
+
grid_d_old = cv2.imread(Depth_path,0)
|
157 |
+
grid_d_old = cv2.resize(grid_d_old,dsize=(W,H),fx=1,fy=1,interpolation=cv2.INTER_LINEAR)
|
158 |
+
grid_d_old = torch.tensor(grid_d_old).reshape(H*W,1)
|
159 |
+
grid_d=grid_d.cpu()
|
160 |
+
mask_d_old = grid_d_old[:, None, :] - grid_d_old[None, :, :] #(H*W H*W 2)
|
161 |
+
mask_d_old = (mask_d_old.abs()).sum(dim=-1)
|
162 |
+
Color_N=255
|
163 |
+
for i in index_list[0]:#range(0,H*W,4):#range(0,H*W,4):#index_list[i_temp]:#range(0,H*W,1): [242,258]:#range
|
164 |
+
for color_temp in cmap_list:
|
165 |
+
|
166 |
+
temp_mask_d = depth_map[0,0,i,:].reshape(H,W).cpu()
|
167 |
+
|
168 |
+
temp_mask = mask_1[i,:].reshape(H,W).cpu()
|
169 |
+
print(torch.max(temp_mask_d),torch.min(temp_mask_d))
|
170 |
+
temp_mask_d_old = mask_d_old[i,:].reshape(H,W).cpu()
|
171 |
+
temp_mask_sum = mask_sum[0,0,i,:].reshape(H,W).cpu()
|
172 |
+
temp_mask_d=torch.nn.functional.normalize(temp_mask_d, p=2.0, dim=1, eps=1e-12, out=None)
|
173 |
+
|
174 |
+
temp_mask_d = 255*(temp_mask_d-torch.min(temp_mask_d))/(torch.max(temp_mask_d)-torch.min(temp_mask_d))
|
175 |
+
|
176 |
+
temp_mask = 255*((temp_mask-torch.min(temp_mask))/(torch.max(temp_mask)-torch.min(temp_mask)))
|
177 |
+
|
178 |
+
temp_mask_sum = 255*((temp_mask_sum-torch.min(temp_mask_sum))/(torch.max(temp_mask_sum)-torch.min(temp_mask_sum)))
|
179 |
+
gama =0.55
|
180 |
+
temp_mask_d_old = 255*(temp_mask_d_old-torch.min(temp_mask_d_old))/(torch.max(temp_mask_d_old)-torch.min(temp_mask_d_old))
|
181 |
+
a0=put_mask(img,fangda(temp_mask),color_temp=color_temp)
|
182 |
+
jiange = 255*torch.ones(img.shape[0],20)
|
183 |
+
temp_mask_fuse = torch.cat([fangda(temp_mask),jiange,fangda(temp_mask_d),jiange,fangda(gama*temp_mask+(1-gama)*temp_mask_d),jiange,torch.tensor(grid_d_copy_gray)],dim=1)
|
184 |
+
jiange = np.ones((img.shape[0],20, 3)) * 255
|
185 |
+
|
186 |
+
a2 = put_mask(img, fangda(temp_mask_d),color_temp=color_temp)
|
187 |
+
print(a2.shape)
|
188 |
+
a3 = put_mask(img,fangda(gama*temp_mask+(1-gama)*temp_mask_d),color_temp=color_temp)
|
189 |
+
# image = np.concatenate([img,grid_d_copy,a0,jiange, a2,jiange,a3,jiange] ,axis=1)
|
190 |
+
# print(image.dtype)
|
191 |
+
# print(np.max(image),np.min(image))
|
192 |
+
# cv2.imshow('./temp/demo_'+color_temp+"_"+str(i)+'.png',image.astype(np.uint8))
|
193 |
+
return a3.astype(np.uint8)
|
194 |
+
|
195 |
+
# 新增gradio接口函数
|
196 |
+
def process_images(rgb_image, depth_image):
|
197 |
+
"""
|
198 |
+
处理上传的图像并返回可视化结果
|
199 |
+
|
200 |
+
Args:
|
201 |
+
rgb_image: gradio上传的RGB图像
|
202 |
+
depth_image: gradio上传的深度图像
|
203 |
+
Returns:
|
204 |
+
可视化结果图像
|
205 |
+
"""
|
206 |
+
# 保存临时文件
|
207 |
+
temp_rgb_path = "temp_rgb.jpg"
|
208 |
+
temp_depth_path = "temp_depth.png"
|
209 |
+
|
210 |
+
# 保存上传的图像
|
211 |
+
cv2.imwrite(temp_rgb_path, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
|
212 |
+
cv2.imwrite(temp_depth_path, depth_image)
|
213 |
+
|
214 |
+
# 调用原有的可视化函数
|
215 |
+
try:
|
216 |
+
result = visualize_geometry_prior(temp_rgb_path, temp_depth_path,x=x,y=y)
|
217 |
+
|
218 |
+
# 清理临时文件
|
219 |
+
os.remove(temp_rgb_path)
|
220 |
+
os.remove(temp_depth_path)
|
221 |
+
|
222 |
+
# 转换颜色空间
|
223 |
+
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
|
224 |
+
return result
|
225 |
+
except Exception as e:
|
226 |
+
print(f"Error during processing: {str(e)}")
|
227 |
+
return None
|
228 |
+
finally:
|
229 |
+
# 确保临时文件被删除
|
230 |
+
if os.path.exists(temp_rgb_path):
|
231 |
+
os.remove(temp_rgb_path)
|
232 |
+
if os.path.exists(temp_depth_path):
|
233 |
+
os.remove(temp_depth_path)
|
234 |
+
|
235 |
+
def draw_star(image, x, y, size=20, color=(255, 0, 0), thickness=2):
|
236 |
+
"""在图像上绘制五角星"""
|
237 |
+
# 计算五角星的顶点
|
238 |
+
pts = np.array([[x, y - size], # 顶部点
|
239 |
+
[x + size * 0.588, y + size * 0.809], # 右下
|
240 |
+
[x - size * 0.951, y - size * 0.309], # 左上
|
241 |
+
[x + size * 0.951, y - size * 0.309], # 右上
|
242 |
+
[x - size * 0.588, y + size * 0.809]], np.int32) # 左下
|
243 |
+
|
244 |
+
# 绘制五角星
|
245 |
+
cv2.polylines(image, [pts], True, color, thickness)
|
246 |
+
return image
|
247 |
+
|
248 |
+
# 创建Gradio界面
|
249 |
+
def create_demo():
|
250 |
+
with gr.Blocks() as demo:
|
251 |
+
gr.Markdown("# Geometry Prior Visualization Demo")
|
252 |
+
gr.Markdown("""
|
253 |
+
### Instructions:
|
254 |
+
1. Upload RGB and Depth images
|
255 |
+
2. Enter X (0-640) and Y (0-480) coordinates
|
256 |
+
3. A star marker will be shown on the images at the selected position
|
257 |
+
4. Click "Generate Visualization" to create the visualization
|
258 |
+
""")
|
259 |
+
|
260 |
+
with gr.Row():
|
261 |
+
with gr.Column():
|
262 |
+
rgb_input = gr.Image(label="Upload RGB Image")
|
263 |
+
depth_input = gr.Image(label="Upload Depth Image", image_mode="L")
|
264 |
+
with gr.Row():
|
265 |
+
x_coord = gr.Number(label="X (0-640)", value=160, minimum=0, maximum=640)
|
266 |
+
y_coord = gr.Number(label="Y (0-480)", value=270, minimum=0, maximum=480)
|
267 |
+
coordinates_text = gr.Textbox(label="Grid Position and Index", interactive=False)
|
268 |
+
|
269 |
+
with gr.Column():
|
270 |
+
marked_rgb = gr.Image(label="Marked RGB Image")
|
271 |
+
marked_depth = gr.Image(label="Marked Depth Image")
|
272 |
+
output_image = gr.Image(label="Visualization Result")
|
273 |
+
status_text = gr.Textbox(label="Status", interactive=False)
|
274 |
+
|
275 |
+
def update_coordinates_and_images(rgb_image, depth_image, x, y):
|
276 |
+
# 确保坐标在有效范围内
|
277 |
+
x = max(0, min(640, float(x)))
|
278 |
+
y = max(0, min(480, float(y)))
|
279 |
+
|
280 |
+
# 计算在24x32网格中的位置
|
281 |
+
H, W = 480//20, 640//20 # 24x32
|
282 |
+
scaled_x = int(x * W / 640)
|
283 |
+
scaled_y = int(y * H / 480)
|
284 |
+
|
285 |
+
# 计算一维索引
|
286 |
+
grid_index = scaled_y * W + scaled_x
|
287 |
+
|
288 |
+
# 在RGB图像上绘制五角星
|
289 |
+
rgb_marked = rgb_image.copy()
|
290 |
+
if len(rgb_marked.shape) == 2: # 如果是灰度图
|
291 |
+
rgb_marked = cv2.cvtColor(rgb_marked, cv2.COLOR_GRAY2BGR)
|
292 |
+
elif rgb_marked.shape[2] == 4: # 如果是RGBA
|
293 |
+
rgb_marked = cv2.cvtColor(rgb_marked, cv2.COLOR_RGBA2BGR)
|
294 |
+
rgb_marked = draw_star(rgb_marked, int(x), int(y), size=20, color=(255, 0, 0))
|
295 |
+
|
296 |
+
# 在深度图像上绘制五角星
|
297 |
+
depth_marked = depth_image.copy()
|
298 |
+
if len(depth_marked.shape) == 2: # 如果是单通道
|
299 |
+
depth_marked = cv2.cvtColor(depth_marked, cv2.COLOR_GRAY2BGR)
|
300 |
+
depth_marked = draw_star(depth_marked, int(x), int(y), size=20, color=(0, 255, 0))
|
301 |
+
|
302 |
+
return (f"Grid position: ({scaled_x}, {scaled_y}), Index: {grid_index}",
|
303 |
+
rgb_marked,
|
304 |
+
depth_marked)
|
305 |
+
|
306 |
+
# 坐标更新按钮
|
307 |
+
coord_update_btn = gr.Button("Update Coordinates")
|
308 |
+
coord_update_btn.click(
|
309 |
+
fn=update_coordinates_and_images,
|
310 |
+
inputs=[rgb_input, depth_input, x_coord, y_coord],
|
311 |
+
outputs=[coordinates_text, marked_rgb, marked_depth]
|
312 |
+
)
|
313 |
+
|
314 |
+
def process_with_status(rgb_image, depth_image, coords_text, x, y):
|
315 |
+
try:
|
316 |
+
# 保存临时文件
|
317 |
+
temp_rgb_path = "temp_rgb.jpg"
|
318 |
+
temp_depth_path = "temp_depth.png"
|
319 |
+
|
320 |
+
# 保存上传的图像
|
321 |
+
cv2.imwrite(temp_rgb_path, cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR))
|
322 |
+
cv2.imwrite(temp_depth_path, depth_image)
|
323 |
+
|
324 |
+
if coords_text:
|
325 |
+
index = int(coords_text.split("Index: ")[-1])
|
326 |
+
index_list = [[index]]
|
327 |
+
else:
|
328 |
+
index_list = [[584]] # 默认值
|
329 |
+
|
330 |
+
result = visualize_geometry_prior(temp_rgb_path, temp_depth_path, index_list=index_list, x=x, y=y)
|
331 |
+
|
332 |
+
# 清理临时文件
|
333 |
+
os.remove(temp_rgb_path)
|
334 |
+
os.remove(temp_depth_path)
|
335 |
+
|
336 |
+
# 转换颜色空间以正确显示
|
337 |
+
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
|
338 |
+
return result, "Processing completed successfully!"
|
339 |
+
except Exception as e:
|
340 |
+
# 确保临时文件被删除
|
341 |
+
if os.path.exists(temp_rgb_path):
|
342 |
+
os.remove(temp_rgb_path)
|
343 |
+
if os.path.exists(temp_depth_path):
|
344 |
+
os.remove(temp_depth_path)
|
345 |
+
return None, f"Error: {str(e)}"
|
346 |
+
|
347 |
+
process_btn = gr.Button("Generate Visualization")
|
348 |
+
process_btn.click(
|
349 |
+
fn=process_with_status,
|
350 |
+
inputs=[rgb_input, depth_input, coordinates_text, x_coord, y_coord],
|
351 |
+
outputs=[output_image, status_text]
|
352 |
+
)
|
353 |
+
|
354 |
+
# 添加自动更新功能
|
355 |
+
x_coord.change(
|
356 |
+
fn=update_coordinates_and_images,
|
357 |
+
inputs=[rgb_input, depth_input, x_coord, y_coord],
|
358 |
+
outputs=[coordinates_text, marked_rgb, marked_depth]
|
359 |
+
)
|
360 |
+
y_coord.change(
|
361 |
+
fn=update_coordinates_and_images,
|
362 |
+
inputs=[rgb_input, depth_input, x_coord, y_coord],
|
363 |
+
outputs=[coordinates_text, marked_rgb, marked_depth]
|
364 |
+
)
|
365 |
+
|
366 |
+
gr.Examples(
|
367 |
+
examples=[
|
368 |
+
["assets/example_rgb.jpg", "assets/example_depth.png"]
|
369 |
+
],
|
370 |
+
inputs=[rgb_input, depth_input]
|
371 |
+
)
|
372 |
+
|
373 |
+
return demo
|
374 |
+
|
375 |
+
# 启动代码
|
376 |
+
if __name__ == "__main__":
|
377 |
+
demo = create_demo()
|
378 |
+
demo.queue()
|
379 |
+
demo.launch(
|
380 |
+
server_name="0.0.0.0",
|
381 |
+
share=True,
|
382 |
+
debug=True
|
383 |
+
)
|
assets/example_depth.png
ADDED
![]() |
Git LFS Details
|
assets/example_rgb.jpg
ADDED
![]() |
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
opencv-python-headless
|
5 |
+
numpy
|
6 |
+
torchcam
|