File size: 2,938 Bytes
01d6b28
 
 
 
07fea5f
01d6b28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# log dir 
log_dir: /mntcephfs/lab_data/zhiyuanyan/benchmark_results/logs_final/spsl_4frames

# model setting
pretrained: ../weights/xception_best.pth   # path to a pre-trained model, if using one
# pretrained: /home/tianshuoge/resnet34-b627a593.pth   # path to a pre-trained model, if using one
model_name: spsl   # model name
backbone_name: xception  # backbone name

#backbone setting
backbone_config:
  mode: original  # shallow_xception
  num_classes: 2
  inc: 4
  dropout: false

# dataset
all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV]
train_dataset: [FF-FS]
test_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT]

compression: c23  # compression-level for videos
train_batchSize: 32   # training batch size
test_batchSize: 32   # test batch size
workers: 8   # number of data loading workers
frame_num: {'train': 4, 'test': 32}   # number of frames to use per video in training and testing
resolution: 256   # resolution of output image to network
with_mask: false   # whether to include mask information in the input
with_landmark: false   # whether to include facial landmark information in the input
save_ckpt: true   # whether to save checkpoint
save_feat: true   # whether to save features


# data augmentation
use_data_augmentation: true  # Add this flag to enable/disable data augmentation
data_aug:
  flip_prob: 0.5
  rotate_prob: 0.5
  rotate_limit: [-10, 10]
  blur_prob: 0.5
  blur_limit: [3, 7]
  brightness_prob: 0.5
  brightness_limit: [-0.1, 0.1]
  contrast_limit: [-0.1, 0.1]
  quality_lower: 40
  quality_upper: 100

# mean and std for normalization
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]

# optimizer config
optimizer:
  # choose between 'adam' and 'sgd'
  type: adam
  adam:
    lr: 0.0002  # learning rate
    beta1: 0.9  # beta1 for Adam optimizer
    beta2: 0.999 # beta2 for Adam optimizer
    eps: 0.00000001  # epsilon for Adam optimizer
    weight_decay: 0.0005  # weight decay for regularization
    amsgrad: false
  sgd:
    lr: 0.0002  # learning rate
    momentum: 0.9  # momentum for SGD optimizer
    weight_decay: 0.0005  # weight decay for regularization

# training config
lr_scheduler: null   # learning rate scheduler
nEpochs: 10   # number of epochs to train for
start_epoch: 0   # manual epoch number (useful for restarts)
save_epoch: 1   # interval epochs for saving models
rec_iter: 100   # interval iterations for recording
logdir: ./logs   # folder to output images and logs
manualSeed: 1024   # manual seed for random number generation
save_ckpt: false   # whether to save checkpoint

# loss function
loss_func: cross_entropy   # loss function to use
losstype: null

# metric
metric_scoring: auc   # metric for evaluation (auc, acc, eer, ap)

# cuda

cuda: true   # whether to use CUDA acceleration
cudnn: true   # whether to use CuDNN for convolution operations