Text Classification
Transformers
Safetensors
English
roberta
antypasd commited on
Commit
4ba0c79
·
1 Parent(s): f5bd536

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - cardiffnlp/super_tweeteval
5
+ language:
6
+ - en
7
+ pipeline_tag: text-classification
8
+ ---
9
+ # cardiffnlp/twitter-roberta-large-latest-tweet-sentiment
10
+
11
+ This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for sentiment analysis (target based) on the _TweetSentiment_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
12
+ The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
13
+
14
+ # Labels
15
+ <code>
16
+ "id2label": {
17
+ "0": "strongly negative",
18
+ "1": "negative",
19
+ "2": "negative or neutral",
20
+ "3": "positive",
21
+ "4": "strongly positive"
22
+ }
23
+ </code>
24
+
25
+ ## Example
26
+ ```python
27
+ from transformers import pipeline
28
+ text= 'If I make a game as a #windows10 Universal App. Will #xboxone owners be able to download and play it in November? @user @microsoft'
29
+ target = "@microsoft"
30
+ text_input = f"{text} </s> {target}"
31
+
32
+ pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-latest-tweet-sentiment")
33
+ pipe(text)
34
+ >> [{'label': 'negative or neutral', 'score': 0.9601162672042847}]
35
+ ```
36
+
37
+ ## Citation Information
38
+
39
+ Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.
40
+
41
+ ```bibtex
42
+ @inproceedings{antypas2023supertweeteval,
43
+ title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
44
+ author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
45
+ booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
46
+ year={2023}
47
+ }
48
+ ```