File size: 9,848 Bytes
9114586 c32e777 17fb911 c32e777 17fb911 cce32c3 c32e777 de6b306 c32e777 108f9a1 c32e777 108f9a1 c32e777 9114586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
license: apache-2.0
datasets:
- chenjoya/Live-CC-5M
- chenjoya/Live-WhisperX-526K
- lmms-lab/LLaVA-Video-178K
language:
- en
base_model:
- Qwen/Qwen2-VL-7B
tags:
- qwen_vl
- video
- real-time
- multimodal
- LLM
---
# LiveCC-7B-Instruct
## Introduction
We introduce LiveCC, the first video LLM capable of real-time commentary, trained with a novel video-ASR streaming method, SOTA on both streaming and offline benchmarks.
- Project Page: https://showlab.github.io/livecc
> [!Important]
> This is the SFT model. The base model is at [LiveCC-7B-Base](https://huggingface.co/chenjoya/LiveCC-7B-Base).
## Training with Streaming Frame-Words Paradigm

## Quickstart
Like qwen-vl-utils, we offer a toolkit to help you handle various types of visual input more conveniently, **especially on video streaming inputs**. You can install it using the following command:
```bash
pip install qwen-vl-utils livecc-utils
```
Here we show a code snippet to show you how to do **real-time video commentary** with `transformers` and the above utils:
```python
import functools, torch, os, tqdm
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl
apply_liger_kernel_to_qwen2_vl() # important. our model is trained with this. keep consistency
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, LogitsProcessor, logging
from livecc_utils import prepare_multiturn_multimodal_inputs_for_generation, get_smart_resized_clip, get_smart_resized_video_reader
from qwen_vl_utils import process_vision_info
class LiveCCDemoInfer:
VIDEO_PLAY_END = object()
VIDEO_PLAY_CONTINUE = object()
fps = 2
initial_fps_frames = 6
streaming_fps_frames = 2
initial_time_interval = initial_fps_frames / fps
streaming_time_interval = streaming_fps_frames / fps
frame_time_interval = 1 / fps
def __init__(self, model_path: str = None, device_id: int = 0):
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_path, torch_dtype="auto",
device_map=f'cuda:{device_id}',
attn_implementation='flash_attention_2'
)
self.processor = AutoProcessor.from_pretrained(model_path, use_fast=False)
self.streaming_eos_token_id = self.processor.tokenizer(' ...').input_ids[-1]
self.model.prepare_inputs_for_generation = functools.partial(prepare_multiturn_multimodal_inputs_for_generation, self.model)
message = {
"role": "user",
"content": [
{"type": "text", "text": 'livecc'},
]
}
texts = self.processor.apply_chat_template([message], tokenize=False)
self.system_prompt_offset = texts.index('<|im_start|>user')
self._cached_video_readers_with_hw = {}
@torch.inference_mode()
def live_cc(
self,
query: str,
state: dict,
max_pixels: int = 384 * 28 * 28,
default_query: str = 'Please describe the video.',
do_sample: bool = False,
repetition_penalty: float = 1.05,
streaming_eos_base_threshold: float = None,
streaming_eos_threshold_step: float = None,
**kwargs,
):
"""
state: dict, (maybe) with keys:
video_path: str, video path
video_timestamp: float, current video timestamp
last_timestamp: float, last processed video timestamp
last_video_pts_index: int, last processed video frame index
video_pts: np.ndarray, video pts
last_history: list, last processed history
"""
# 1. preparation: video_reader, and last processing info
video_timestamp, last_timestamp = state.get('video_timestamp', 0), state.get('last_timestamp', -1 / self.fps)
video_path = state['video_path']
if video_path not in self._cached_video_readers_with_hw:
self._cached_video_readers_with_hw[video_path] = get_smart_resized_video_reader(video_path, max_pixels)
video_reader = self._cached_video_readers_with_hw[video_path][0]
video_reader.get_frame_timestamp(0)
state['video_pts'] = torch.from_numpy(video_reader._frame_pts[:, 1])
state['last_video_pts_index'] = -1
video_pts = state['video_pts']
if last_timestamp + self.frame_time_interval > video_pts[-1]:
state['video_end'] = True
return
video_reader, resized_height, resized_width = self._cached_video_readers_with_hw[video_path]
last_video_pts_index = state['last_video_pts_index']
# 2. which frames will be processed
initialized = last_timestamp >= 0
if not initialized:
video_timestamp = max(video_timestamp, self.initial_time_interval)
if video_timestamp <= last_timestamp + self.frame_time_interval:
return
timestamps = torch.arange(last_timestamp + self.frame_time_interval, video_timestamp, self.frame_time_interval) # add compensation
# 3. fetch frames in required timestamps
clip, clip_timestamps, clip_idxs = get_smart_resized_clip(video_reader, resized_height, resized_width, timestamps, video_pts, video_pts_index_from=last_video_pts_index+1)
state['last_video_pts_index'] = clip_idxs[-1]
state['last_timestamp'] = clip_timestamps[-1]
# 4. organize to interleave frames
interleave_clips, interleave_timestamps = [], []
if not initialized:
interleave_clips.append(clip[:self.initial_fps_frames])
interleave_timestamps.append(clip_timestamps[:self.initial_fps_frames])
clip = clip[self.initial_fps_frames:]
clip_timestamps = clip_timestamps[self.initial_fps_frames:]
if len(clip) > 0:
interleave_clips.extend(list(clip.split(self.streaming_fps_frames)))
interleave_timestamps.extend(list(clip_timestamps.split(self.streaming_fps_frames)))
# 5. make conversation and send to model
for clip, timestamps in zip(interleave_clips, interleave_timestamps):
start_timestamp, stop_timestamp = timestamps[0].item(), timestamps[-1].item() + self.frame_time_interval
message = {
"role": "user",
"content": [
{"type": "text", "text": f'Time={start_timestamp:.1f}-{stop_timestamp:.1f}s'},
{"type": "video", "video": clip}
]
}
if not query and not state.get('query', None):
query = default_query
logger.warning(f'No query provided, use default_query={default_query}')
if query and state.get('query', None) != query:
message['content'].append({"type": "text", "text": query})
state['query'] = query
texts = self.processor.apply_chat_template([message], tokenize=False, add_generation_prompt=True, return_tensors='pt')
past_ids = state.get('past_ids', None)
if past_ids is not None:
texts = '<|im_end|>\n' + texts[self.system_prompt_offset:]
inputs = self.processor(
text=texts,
images=None,
videos=[clip],
return_tensors="pt",
return_attention_mask=False
)
inputs.to('cuda')
if past_ids is not None:
inputs['input_ids'] = torch.cat([past_ids, inputs.input_ids], dim=1)
if streaming_eos_base_threshold is not None:
logits_processor = [ThresholdLogitsProcessor(self.streaming_eos_token_id, streaming_eos_base_threshold, streaming_eos_threshold_step)]
else:
logits_processor = None
outputs = self.model.generate(
**inputs, past_key_values=state.get('past_key_values', None),
return_dict_in_generate=True, do_sample=do_sample,
repetition_penalty=repetition_penalty,
logits_processor=logits_processor,
)
state['past_key_values'] = outputs.past_key_values
state['past_ids'] = outputs.sequences[:, :-1]
yield (start_timestamp, stop_timestamp), self.processor.decode(outputs.sequences[0, inputs.input_ids.size(1):], skip_special_tokens=True), state
model_path = 'chenjoya/LiveCC-7B-Instruct'
video_path = "spacex_falcon9.mp4"
query = """Let's wait together!"""
infer = LiveCCDemoInfer(model_path=model_path)
state = {'video_path': video_path}
commentaries = []
t = 0
for t in range(31):
state['video_timestamp'] = t
for (start_t, stop_t), response, state in infer.live_cc(
query=query, state=state,
max_pixels = 512 * 28 * 28, repetition_penalty=1.05,
streaming_eos_base_threshold=0.0, streaming_eos_threshold_step=0
):
print(f'{start_t}s-{stop_t}s: {response}')
commentaries.append([start_t, stop_t, response])
if state.get('video_end', False):
break
t += 1
```
## Limitations
- This model is starting from Qwen2-VL-7B-Base, so it may have limitations mentioned in https://huggingface.co/Qwen/Qwen2-VL-7B.
- This model is trained only with streaming frame-words paradigm, thus it may be only capable for real-time video commentary.
- The training ASR data is from YouTube CC, which has well-known low quality, so its formatting is not good (e.g. cannot output punctuation).
These limitations serve as ongoing directions for model optimization and improvement, and we are committed to continually enhancing the model's performance and scope of application.
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{livecc,
author = {Joya Chen and Ziyun Zeng and Yiqi Lin and Wei Li and Zejun Ma and Mike Zheng Shou},
title = {LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale},
journal = {arXiv preprint arXiv:2504.16030}
year = {2025},
}
``` |