Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +250 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: qwen-2.5-0.5B-instruct-sft-lora-countdown-o3-1k
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for qwen-2.5-0.5B-instruct-sft-lora-countdown-o3-1k
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="chloeli/qwen-2.5-0.5B-instruct-sft-lora-countdown-o3-1k", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chloeli/huggingface/runs/2vxkv1e0)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.3.2
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 4503614496178176.0,
|
3 |
+
"train_loss": 0.7746698780059814,
|
4 |
+
"train_runtime": 1219.5612,
|
5 |
+
"train_samples": 1000,
|
6 |
+
"train_samples_per_second": 0.82,
|
7 |
+
"train_steps_per_second": 0.102
|
8 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 4503614496178176.0,
|
3 |
+
"train_loss": 0.7746698780059814,
|
4 |
+
"train_runtime": 1219.5612,
|
5 |
+
"train_samples": 1000,
|
6 |
+
"train_samples_per_second": 0.82,
|
7 |
+
"train_steps_per_second": 0.102
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 125,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008,
|
13 |
+
"grad_norm": 0.6091650128364563,
|
14 |
+
"learning_rate": 1.5384615384615387e-05,
|
15 |
+
"loss": 1.7915,
|
16 |
+
"mean_token_accuracy": 0.6200876832008362,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.04,
|
21 |
+
"grad_norm": 0.536028265953064,
|
22 |
+
"learning_rate": 7.692307692307693e-05,
|
23 |
+
"loss": 1.7044,
|
24 |
+
"mean_token_accuracy": 0.6384097561240196,
|
25 |
+
"step": 5
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.08,
|
29 |
+
"grad_norm": 0.3632589876651764,
|
30 |
+
"learning_rate": 0.00015384615384615385,
|
31 |
+
"loss": 1.5683,
|
32 |
+
"mean_token_accuracy": 0.6574486196041107,
|
33 |
+
"step": 10
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.12,
|
37 |
+
"grad_norm": 0.38857078552246094,
|
38 |
+
"learning_rate": 0.00019984268150178167,
|
39 |
+
"loss": 1.3468,
|
40 |
+
"mean_token_accuracy": 0.6951748728752136,
|
41 |
+
"step": 15
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.16,
|
45 |
+
"grad_norm": 0.5654380321502686,
|
46 |
+
"learning_rate": 0.00019807852804032305,
|
47 |
+
"loss": 1.1075,
|
48 |
+
"mean_token_accuracy": 0.7350626409053802,
|
49 |
+
"step": 20
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.2,
|
53 |
+
"grad_norm": 0.5035667419433594,
|
54 |
+
"learning_rate": 0.00019438833303083678,
|
55 |
+
"loss": 0.8489,
|
56 |
+
"mean_token_accuracy": 0.8006348431110382,
|
57 |
+
"step": 25
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"grad_norm": 0.28405892848968506,
|
62 |
+
"learning_rate": 0.00018884456359788724,
|
63 |
+
"loss": 0.8182,
|
64 |
+
"mean_token_accuracy": 0.8062106907367707,
|
65 |
+
"step": 30
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.28,
|
69 |
+
"grad_norm": 0.20907118916511536,
|
70 |
+
"learning_rate": 0.00018155608689592604,
|
71 |
+
"loss": 0.7165,
|
72 |
+
"mean_token_accuracy": 0.8268509089946747,
|
73 |
+
"step": 35
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.32,
|
77 |
+
"grad_norm": 0.22087477147579193,
|
78 |
+
"learning_rate": 0.0001726660322034027,
|
79 |
+
"loss": 0.7139,
|
80 |
+
"mean_token_accuracy": 0.8272643625736237,
|
81 |
+
"step": 40
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.36,
|
85 |
+
"grad_norm": 0.23085324466228485,
|
86 |
+
"learning_rate": 0.00016234898018587337,
|
87 |
+
"loss": 0.6703,
|
88 |
+
"mean_token_accuracy": 0.8364481091499328,
|
89 |
+
"step": 45
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.4,
|
93 |
+
"grad_norm": 0.20583884418010712,
|
94 |
+
"learning_rate": 0.00015080753452465296,
|
95 |
+
"loss": 0.6077,
|
96 |
+
"mean_token_accuracy": 0.8467150866985321,
|
97 |
+
"step": 50
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.44,
|
101 |
+
"grad_norm": 0.20109635591506958,
|
102 |
+
"learning_rate": 0.000138268343236509,
|
103 |
+
"loss": 0.6485,
|
104 |
+
"mean_token_accuracy": 0.8379231691360474,
|
105 |
+
"step": 55
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.48,
|
109 |
+
"grad_norm": 0.19621974229812622,
|
110 |
+
"learning_rate": 0.0001249776478167227,
|
111 |
+
"loss": 0.661,
|
112 |
+
"mean_token_accuracy": 0.8345841407775879,
|
113 |
+
"step": 60
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.52,
|
117 |
+
"grad_norm": 0.2204616218805313,
|
118 |
+
"learning_rate": 0.00011119644761033078,
|
119 |
+
"loss": 0.6226,
|
120 |
+
"mean_token_accuracy": 0.8435723900794982,
|
121 |
+
"step": 65
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.56,
|
125 |
+
"grad_norm": 0.18189997971057892,
|
126 |
+
"learning_rate": 9.719537437241312e-05,
|
127 |
+
"loss": 0.5835,
|
128 |
+
"mean_token_accuracy": 0.8532270193099976,
|
129 |
+
"step": 70
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6,
|
133 |
+
"grad_norm": 0.2008037269115448,
|
134 |
+
"learning_rate": 8.324937766952638e-05,
|
135 |
+
"loss": 0.6159,
|
136 |
+
"mean_token_accuracy": 0.8451593399047852,
|
137 |
+
"step": 75
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.64,
|
141 |
+
"grad_norm": 0.19920995831489563,
|
142 |
+
"learning_rate": 6.963232548903853e-05,
|
143 |
+
"loss": 0.6134,
|
144 |
+
"mean_token_accuracy": 0.844947737455368,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.68,
|
149 |
+
"grad_norm": 0.21071140468120575,
|
150 |
+
"learning_rate": 5.6611626088244194e-05,
|
151 |
+
"loss": 0.6287,
|
152 |
+
"mean_token_accuracy": 0.8413995563983917,
|
153 |
+
"step": 85
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.72,
|
157 |
+
"grad_norm": 0.2002287358045578,
|
158 |
+
"learning_rate": 4.444297669803981e-05,
|
159 |
+
"loss": 0.5997,
|
160 |
+
"mean_token_accuracy": 0.8461678445339202,
|
161 |
+
"step": 90
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.76,
|
165 |
+
"grad_norm": 0.2541356086730957,
|
166 |
+
"learning_rate": 3.336534220479961e-05,
|
167 |
+
"loss": 0.6379,
|
168 |
+
"mean_token_accuracy": 0.8375702917575836,
|
169 |
+
"step": 95
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.8,
|
173 |
+
"grad_norm": 0.20431411266326904,
|
174 |
+
"learning_rate": 2.3596262417839255e-05,
|
175 |
+
"loss": 0.5859,
|
176 |
+
"mean_token_accuracy": 0.8490248620510101,
|
177 |
+
"step": 100
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.84,
|
181 |
+
"grad_norm": 0.2237038016319275,
|
182 |
+
"learning_rate": 1.5327580077171587e-05,
|
183 |
+
"loss": 0.6047,
|
184 |
+
"mean_token_accuracy": 0.8456766724586486,
|
185 |
+
"step": 105
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.88,
|
189 |
+
"grad_norm": 0.22031715512275696,
|
190 |
+
"learning_rate": 8.72167349386811e-06,
|
191 |
+
"loss": 0.5933,
|
192 |
+
"mean_token_accuracy": 0.848451578617096,
|
193 |
+
"step": 110
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.92,
|
197 |
+
"grad_norm": 0.21197955310344696,
|
198 |
+
"learning_rate": 3.908267805490051e-06,
|
199 |
+
"loss": 0.6018,
|
200 |
+
"mean_token_accuracy": 0.8468173623085022,
|
201 |
+
"step": 115
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.96,
|
205 |
+
"grad_norm": 0.20556138455867767,
|
206 |
+
"learning_rate": 9.818874663554357e-07,
|
207 |
+
"loss": 0.6277,
|
208 |
+
"mean_token_accuracy": 0.8388452410697937,
|
209 |
+
"step": 120
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.0,
|
213 |
+
"grad_norm": 0.2163011133670807,
|
214 |
+
"learning_rate": 0.0,
|
215 |
+
"loss": 0.6224,
|
216 |
+
"mean_token_accuracy": 0.8408988118171692,
|
217 |
+
"step": 125
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 1.0,
|
221 |
+
"step": 125,
|
222 |
+
"total_flos": 4503614496178176.0,
|
223 |
+
"train_loss": 0.7746698780059814,
|
224 |
+
"train_runtime": 1219.5612,
|
225 |
+
"train_samples_per_second": 0.82,
|
226 |
+
"train_steps_per_second": 0.102
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"logging_steps": 5,
|
230 |
+
"max_steps": 125,
|
231 |
+
"num_input_tokens_seen": 0,
|
232 |
+
"num_train_epochs": 1,
|
233 |
+
"save_steps": 100,
|
234 |
+
"stateful_callbacks": {
|
235 |
+
"TrainerControl": {
|
236 |
+
"args": {
|
237 |
+
"should_epoch_stop": false,
|
238 |
+
"should_evaluate": false,
|
239 |
+
"should_log": false,
|
240 |
+
"should_save": true,
|
241 |
+
"should_training_stop": true
|
242 |
+
},
|
243 |
+
"attributes": {}
|
244 |
+
}
|
245 |
+
},
|
246 |
+
"total_flos": 4503614496178176.0,
|
247 |
+
"train_batch_size": 4,
|
248 |
+
"trial_name": null,
|
249 |
+
"trial_params": null
|
250 |
+
}
|