Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +259 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: qwen-2.5-0.5B-instruct-sft-lora-countdown-optimal-1k
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for qwen-2.5-0.5B-instruct-sft-lora-countdown-optimal-1k
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="chloeli/qwen-2.5-0.5B-instruct-sft-lora-countdown-optimal-1k", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chloeli/huggingface/runs/26px5dou)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.3.2
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 948716719046656.0,
|
3 |
+
"train_loss": 0.24438688468933106,
|
4 |
+
"train_runtime": 137.7503,
|
5 |
+
"train_samples": 1000,
|
6 |
+
"train_samples_per_second": 7.26,
|
7 |
+
"train_steps_per_second": 0.907
|
8 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 948716719046656.0,
|
3 |
+
"train_loss": 0.24438688468933106,
|
4 |
+
"train_runtime": 137.7503,
|
5 |
+
"train_samples": 1000,
|
6 |
+
"train_samples_per_second": 7.26,
|
7 |
+
"train_steps_per_second": 0.907
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 125,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008,
|
13 |
+
"grad_norm": 4.959076881408691,
|
14 |
+
"learning_rate": 1.5384615384615387e-05,
|
15 |
+
"loss": 1.8894,
|
16 |
+
"mean_token_accuracy": 0.6759726703166962,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.04,
|
21 |
+
"grad_norm": 3.325948715209961,
|
22 |
+
"learning_rate": 7.692307692307693e-05,
|
23 |
+
"loss": 1.8457,
|
24 |
+
"mean_token_accuracy": 0.6744399294257164,
|
25 |
+
"step": 5
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.08,
|
29 |
+
"grad_norm": 1.0953567028045654,
|
30 |
+
"learning_rate": 0.00015384615384615385,
|
31 |
+
"loss": 1.3863,
|
32 |
+
"mean_token_accuracy": 0.7154875338077545,
|
33 |
+
"step": 10
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.12,
|
37 |
+
"grad_norm": 0.8824595212936401,
|
38 |
+
"learning_rate": 0.00019984268150178167,
|
39 |
+
"loss": 0.8812,
|
40 |
+
"mean_token_accuracy": 0.802780419588089,
|
41 |
+
"step": 15
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.16,
|
45 |
+
"grad_norm": 0.7127411365509033,
|
46 |
+
"learning_rate": 0.00019807852804032305,
|
47 |
+
"loss": 0.3838,
|
48 |
+
"mean_token_accuracy": 0.9001224040985107,
|
49 |
+
"step": 20
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.2,
|
53 |
+
"grad_norm": 0.5814230442047119,
|
54 |
+
"learning_rate": 0.00019438833303083678,
|
55 |
+
"loss": 0.1288,
|
56 |
+
"mean_token_accuracy": 0.9640743255615234,
|
57 |
+
"step": 25
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"grad_norm": 0.3094175457954407,
|
62 |
+
"learning_rate": 0.00018884456359788724,
|
63 |
+
"loss": 0.091,
|
64 |
+
"mean_token_accuracy": 0.9696201145648956,
|
65 |
+
"step": 30
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.28,
|
69 |
+
"grad_norm": 0.28704366087913513,
|
70 |
+
"learning_rate": 0.00018155608689592604,
|
71 |
+
"loss": 0.0822,
|
72 |
+
"mean_token_accuracy": 0.9697297215461731,
|
73 |
+
"step": 35
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.32,
|
77 |
+
"grad_norm": 0.10918337106704712,
|
78 |
+
"learning_rate": 0.0001726660322034027,
|
79 |
+
"loss": 0.0786,
|
80 |
+
"mean_token_accuracy": 0.9703457236289978,
|
81 |
+
"step": 40
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.36,
|
85 |
+
"grad_norm": 0.10930587351322174,
|
86 |
+
"learning_rate": 0.00016234898018587337,
|
87 |
+
"loss": 0.0757,
|
88 |
+
"mean_token_accuracy": 0.9704258263111114,
|
89 |
+
"step": 45
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.4,
|
93 |
+
"grad_norm": 0.08647102862596512,
|
94 |
+
"learning_rate": 0.00015080753452465296,
|
95 |
+
"loss": 0.0725,
|
96 |
+
"mean_token_accuracy": 0.9722082138061523,
|
97 |
+
"step": 50
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.44,
|
101 |
+
"grad_norm": 0.11223802715539932,
|
102 |
+
"learning_rate": 0.000138268343236509,
|
103 |
+
"loss": 0.0766,
|
104 |
+
"mean_token_accuracy": 0.9705742001533508,
|
105 |
+
"step": 55
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.48,
|
109 |
+
"grad_norm": 0.10774961858987808,
|
110 |
+
"learning_rate": 0.0001249776478167227,
|
111 |
+
"loss": 0.0715,
|
112 |
+
"mean_token_accuracy": 0.9713926434516906,
|
113 |
+
"step": 60
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.52,
|
117 |
+
"grad_norm": 0.18533609807491302,
|
118 |
+
"learning_rate": 0.00011119644761033078,
|
119 |
+
"loss": 0.0742,
|
120 |
+
"mean_token_accuracy": 0.9715357601642609,
|
121 |
+
"step": 65
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.56,
|
125 |
+
"grad_norm": 0.1414521187543869,
|
126 |
+
"learning_rate": 9.719537437241312e-05,
|
127 |
+
"loss": 0.0726,
|
128 |
+
"mean_token_accuracy": 0.9722862243652344,
|
129 |
+
"step": 70
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6,
|
133 |
+
"grad_norm": 0.11008978635072708,
|
134 |
+
"learning_rate": 8.324937766952638e-05,
|
135 |
+
"loss": 0.0726,
|
136 |
+
"mean_token_accuracy": 0.9715758740901947,
|
137 |
+
"step": 75
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.64,
|
141 |
+
"grad_norm": 0.0934567004442215,
|
142 |
+
"learning_rate": 6.963232548903853e-05,
|
143 |
+
"loss": 0.0698,
|
144 |
+
"mean_token_accuracy": 0.9724796772003174,
|
145 |
+
"step": 80
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.68,
|
149 |
+
"grad_norm": 0.09209822118282318,
|
150 |
+
"learning_rate": 5.6611626088244194e-05,
|
151 |
+
"loss": 0.0714,
|
152 |
+
"mean_token_accuracy": 0.9721440374851227,
|
153 |
+
"step": 85
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.72,
|
157 |
+
"grad_norm": 0.09165395051240921,
|
158 |
+
"learning_rate": 4.444297669803981e-05,
|
159 |
+
"loss": 0.0699,
|
160 |
+
"mean_token_accuracy": 0.9724449038505554,
|
161 |
+
"step": 90
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.76,
|
165 |
+
"grad_norm": 0.09419706463813782,
|
166 |
+
"learning_rate": 3.336534220479961e-05,
|
167 |
+
"loss": 0.0729,
|
168 |
+
"mean_token_accuracy": 0.9713936984539032,
|
169 |
+
"step": 95
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.8,
|
173 |
+
"grad_norm": 0.08532276749610901,
|
174 |
+
"learning_rate": 2.3596262417839255e-05,
|
175 |
+
"loss": 0.0713,
|
176 |
+
"mean_token_accuracy": 0.971445506811142,
|
177 |
+
"step": 100
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.84,
|
181 |
+
"grad_norm": 0.11239537596702576,
|
182 |
+
"learning_rate": 1.5327580077171587e-05,
|
183 |
+
"loss": 0.0705,
|
184 |
+
"mean_token_accuracy": 0.9732583463191986,
|
185 |
+
"step": 105
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.88,
|
189 |
+
"grad_norm": 0.06490039080381393,
|
190 |
+
"learning_rate": 8.72167349386811e-06,
|
191 |
+
"loss": 0.0712,
|
192 |
+
"mean_token_accuracy": 0.9731930553913116,
|
193 |
+
"step": 110
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.92,
|
197 |
+
"grad_norm": 0.07825157046318054,
|
198 |
+
"learning_rate": 3.908267805490051e-06,
|
199 |
+
"loss": 0.0705,
|
200 |
+
"mean_token_accuracy": 0.9729720294475556,
|
201 |
+
"step": 115
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.96,
|
205 |
+
"grad_norm": 0.10481598228216171,
|
206 |
+
"learning_rate": 9.818874663554357e-07,
|
207 |
+
"loss": 0.0697,
|
208 |
+
"mean_token_accuracy": 0.9719029128551483,
|
209 |
+
"step": 120
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.0,
|
213 |
+
"grad_norm": 0.12130062282085419,
|
214 |
+
"learning_rate": 0.0,
|
215 |
+
"loss": 0.0704,
|
216 |
+
"mean_token_accuracy": 0.9729031443595886,
|
217 |
+
"step": 125
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 1.0,
|
221 |
+
"eval_loss": 0.07161793857812881,
|
222 |
+
"eval_mean_token_accuracy": 0.9721314153671264,
|
223 |
+
"eval_runtime": 39.9967,
|
224 |
+
"eval_samples_per_second": 50.004,
|
225 |
+
"eval_steps_per_second": 6.251,
|
226 |
+
"step": 125
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.0,
|
230 |
+
"step": 125,
|
231 |
+
"total_flos": 948716719046656.0,
|
232 |
+
"train_loss": 0.24438688468933106,
|
233 |
+
"train_runtime": 137.7503,
|
234 |
+
"train_samples_per_second": 7.26,
|
235 |
+
"train_steps_per_second": 0.907
|
236 |
+
}
|
237 |
+
],
|
238 |
+
"logging_steps": 5,
|
239 |
+
"max_steps": 125,
|
240 |
+
"num_input_tokens_seen": 0,
|
241 |
+
"num_train_epochs": 1,
|
242 |
+
"save_steps": 100,
|
243 |
+
"stateful_callbacks": {
|
244 |
+
"TrainerControl": {
|
245 |
+
"args": {
|
246 |
+
"should_epoch_stop": false,
|
247 |
+
"should_evaluate": false,
|
248 |
+
"should_log": false,
|
249 |
+
"should_save": true,
|
250 |
+
"should_training_stop": true
|
251 |
+
},
|
252 |
+
"attributes": {}
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"total_flos": 948716719046656.0,
|
256 |
+
"train_batch_size": 4,
|
257 |
+
"trial_name": null,
|
258 |
+
"trial_params": null
|
259 |
+
}
|