File size: 4,435 Bytes
3636183 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: llama-3.2-3B-rowiki
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.0`
```yaml
base_model: meta-llama/Llama-3.2-3B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: chrisgru/ro_wiki_chatml_small
type: chat_template
chat_template: llama3
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: /workspace/data/ds_preprocess
val_set_size: 0.01
output_dir: ./data/outputs
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
#adapter: lora
##lora_model_dir:
#lora_r: 64
#lora_alpha: 16
#lora_dropout: 0.05
#lora_target_linear: true
#lora_fan_in_fan_out:
#lora_modules_to_save:
# - embed_tokens
# - lm_head
wandb_project: wiki-llm
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 1
#eval_max_new_tokens: 128
save_total_limit: 2
debug:
#deepspeed:
weight_decay: 0.0
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_backward_prefetch: BACKWARD_PRE
seed: 1234
hf_use_auth_token: true
hub_strategy: end
hub_model_id: chrisgru/llama-3.2-3B-rowiki
special_tokens:
bos_token: "<|begin_of_text|>"
pad_token: "<|finetune_right_pad_id|>"
```
</details><br>
# llama-3.2-3B-rowiki
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 1234
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4683 | 0.0009 | 1 | 1.6826 |
| 1.7777 | 0.1001 | 117 | 1.6274 |
| 1.4701 | 0.2003 | 234 | 1.6031 |
| 1.6591 | 0.3004 | 351 | 1.5815 |
| 1.664 | 0.4006 | 468 | 1.5587 |
| 1.5308 | 0.5007 | 585 | 1.5404 |
| 1.3583 | 0.6009 | 702 | 1.5268 |
| 1.4297 | 0.7010 | 819 | 1.5198 |
| 1.7561 | 0.8012 | 936 | 1.5168 |
| 1.6656 | 0.9013 | 1053 | 1.5161 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
|