codersan commited on
Commit
0c07de5
·
verified ·
1 Parent(s): 6c0d497

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38f64d9f5248b96f8f8fbf295ed6dc2707827c52b43f9a60c66622ca3294f4f3
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:142964
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: نمونه هایی از تئوری های توطئه ها که به نظر می رسد درست است؟
12
+ sentences:
13
+ - آیا نظریه های توطئه ای وجود دارد که احتمالاً صادق است؟نظریه های توطئه ای که معلوم
14
+ شد درست است؟
15
+ - بازیگران پانتومیم در حال اجرا بر روی صحنه هستند.
16
+ - چرا میل الکترون فلورین کمتر از کلر است ، در حالی که فلورین الکترونگاتیو ترین عنصر
17
+ است؟
18
+ - source_sentence: بهترین و بدون درد برای کشتن خودم چیست؟
19
+ sentences:
20
+ - بهترین استراتژی ها برای آماده سازی برای GMAT چیست؟
21
+ - آیا ارزش دارد دو سال برای NIT کاهش یابد؟
22
+ - بدون درد ترین روش برای خودکشی چیست؟
23
+ - source_sentence: چه کاری باید انجام دهم در حالی که B-Tech را در مهندسی مکانیک برای
24
+ چشم انداز بهتر شغلی دنبال می کنم؟
25
+ sentences:
26
+ - چگونه می توانیم مشاوره کسب و کار را شروع کنیم؟
27
+ - فرصت های شغلی در شرکت ها پس از M.Tech در مهندسی هوافضا با B.Tech در مهندسی مکانیک
28
+ چیست؟
29
+ - آیا روانپزشکی یک شبه علوم است؟
30
+ - source_sentence: چرا گربه ها وقتی خیار را در مقابل آن قرار می دهید می ترسند؟
31
+ sentences:
32
+ - چرا گربه ها از خیار ترسیده اند؟
33
+ - هک در زندگی روزمره چیست؟
34
+ - چگونه می توانم به سرعت وزن خود را افزایش دهم؟
35
+ - source_sentence: مرزهای صفحه چیست؟برخی از انواع چیست؟
36
+ sentences:
37
+ - مرزهای صفحه چیست؟
38
+ - اتانول چند ایزومر دارد؟
39
+ - چه سؤالاتی در مورد Quora پرسیده نشده است؟
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ ---
43
+
44
+ # SentenceTransformer based on sentence-transformers/LaBSE
45
+
46
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** Sentence Transformer
52
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision b7f947194ceae0ddf90bafe213722569e274ad28 -->
53
+ - **Maximum Sequence Length:** 256 tokens
54
+ - **Output Dimensionality:** 768 dimensions
55
+ - **Similarity Function:** Cosine Similarity
56
+ <!-- - **Training Dataset:** Unknown -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
63
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
64
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
65
+
66
+ ### Full Model Architecture
67
+
68
+ ```
69
+ SentenceTransformer(
70
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
71
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
72
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
73
+ (3): Normalize()
74
+ )
75
+ ```
76
+
77
+ ## Usage
78
+
79
+ ### Direct Usage (Sentence Transformers)
80
+
81
+ First install the Sentence Transformers library:
82
+
83
+ ```bash
84
+ pip install -U sentence-transformers
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+ ```python
89
+ from sentence_transformers import SentenceTransformer
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SentenceTransformer("codersan/FaLaBSE-v7")
93
+ # Run inference
94
+ sentences = [
95
+ 'مرزهای صفحه چیست؟برخی از انواع چیست؟',
96
+ 'مرزهای صفحه چیست؟',
97
+ 'اتانول چند ایزومر دارد؟',
98
+ ]
99
+ embeddings = model.encode(sentences)
100
+ print(embeddings.shape)
101
+ # [3, 768]
102
+
103
+ # Get the similarity scores for the embeddings
104
+ similarities = model.similarity(embeddings, embeddings)
105
+ print(similarities.shape)
106
+ # [3, 3]
107
+ ```
108
+
109
+ <!--
110
+ ### Direct Usage (Transformers)
111
+
112
+ <details><summary>Click to see the direct usage in Transformers</summary>
113
+
114
+ </details>
115
+ -->
116
+
117
+ <!--
118
+ ### Downstream Usage (Sentence Transformers)
119
+
120
+ You can finetune this model on your own dataset.
121
+
122
+ <details><summary>Click to expand</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Out-of-Scope Use
129
+
130
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
131
+ -->
132
+
133
+ <!--
134
+ ## Bias, Risks and Limitations
135
+
136
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
137
+ -->
138
+
139
+ <!--
140
+ ### Recommendations
141
+
142
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
143
+ -->
144
+
145
+ ## Training Details
146
+
147
+ ### Training Dataset
148
+
149
+ #### Unnamed Dataset
150
+
151
+
152
+ * Size: 142,964 training samples
153
+ * Columns: <code>anchor</code> and <code>positive</code>
154
+ * Approximate statistics based on the first 1000 samples:
155
+ | | anchor | positive |
156
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
157
+ | type | string | string |
158
+ | details | <ul><li>min: 6 tokens</li><li>mean: 15.36 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.69 tokens</li><li>max: 50 tokens</li></ul> |
159
+ * Samples:
160
+ | anchor | positive |
161
+ |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------|
162
+ | <code>گاو یونجه می خورد</code> | <code>گاو در حال چریدن است</code> |
163
+ | <code>ماشینی به شکلی خطرناک از روی دختری می‌پرد.</code> | <code>دختر با بی‌احتیاطی روی ماشین می‌پرد.</code> |
164
+ | <code>چگونه می توانم کارتهای هدیه iTunes رایگان را در هند دریافت کنم؟</code> | <code>چگونه می توانم کارتهای هدیه iTunes رایگان دریافت کنم؟</code> |
165
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
166
+ ```json
167
+ {
168
+ "scale": 20.0,
169
+ "similarity_fct": "cos_sim"
170
+ }
171
+ ```
172
+
173
+ ### Training Hyperparameters
174
+ #### Non-Default Hyperparameters
175
+
176
+ - `per_device_train_batch_size`: 32
177
+ - `learning_rate`: 3e-05
178
+ - `weight_decay`: 0.15
179
+ - `num_train_epochs`: 4
180
+ - `warmup_ratio`: 0.15
181
+ - `batch_sampler`: no_duplicates
182
+
183
+ #### All Hyperparameters
184
+ <details><summary>Click to expand</summary>
185
+
186
+ - `overwrite_output_dir`: False
187
+ - `do_predict`: False
188
+ - `eval_strategy`: no
189
+ - `prediction_loss_only`: True
190
+ - `per_device_train_batch_size`: 32
191
+ - `per_device_eval_batch_size`: 8
192
+ - `per_gpu_train_batch_size`: None
193
+ - `per_gpu_eval_batch_size`: None
194
+ - `gradient_accumulation_steps`: 1
195
+ - `eval_accumulation_steps`: None
196
+ - `torch_empty_cache_steps`: None
197
+ - `learning_rate`: 3e-05
198
+ - `weight_decay`: 0.15
199
+ - `adam_beta1`: 0.9
200
+ - `adam_beta2`: 0.999
201
+ - `adam_epsilon`: 1e-08
202
+ - `max_grad_norm`: 1.0
203
+ - `num_train_epochs`: 4
204
+ - `max_steps`: -1
205
+ - `lr_scheduler_type`: linear
206
+ - `lr_scheduler_kwargs`: {}
207
+ - `warmup_ratio`: 0.15
208
+ - `warmup_steps`: 0
209
+ - `log_level`: passive
210
+ - `log_level_replica`: warning
211
+ - `log_on_each_node`: True
212
+ - `logging_nan_inf_filter`: True
213
+ - `save_safetensors`: True
214
+ - `save_on_each_node`: False
215
+ - `save_only_model`: False
216
+ - `restore_callback_states_from_checkpoint`: False
217
+ - `no_cuda`: False
218
+ - `use_cpu`: False
219
+ - `use_mps_device`: False
220
+ - `seed`: 42
221
+ - `data_seed`: None
222
+ - `jit_mode_eval`: False
223
+ - `use_ipex`: False
224
+ - `bf16`: False
225
+ - `fp16`: False
226
+ - `fp16_opt_level`: O1
227
+ - `half_precision_backend`: auto
228
+ - `bf16_full_eval`: False
229
+ - `fp16_full_eval`: False
230
+ - `tf32`: None
231
+ - `local_rank`: 0
232
+ - `ddp_backend`: None
233
+ - `tpu_num_cores`: None
234
+ - `tpu_metrics_debug`: False
235
+ - `debug`: []
236
+ - `dataloader_drop_last`: False
237
+ - `dataloader_num_workers`: 0
238
+ - `dataloader_prefetch_factor`: None
239
+ - `past_index`: -1
240
+ - `disable_tqdm`: False
241
+ - `remove_unused_columns`: True
242
+ - `label_names`: None
243
+ - `load_best_model_at_end`: False
244
+ - `ignore_data_skip`: False
245
+ - `fsdp`: []
246
+ - `fsdp_min_num_params`: 0
247
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
248
+ - `fsdp_transformer_layer_cls_to_wrap`: None
249
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
250
+ - `deepspeed`: None
251
+ - `label_smoothing_factor`: 0.0
252
+ - `optim`: adamw_torch
253
+ - `optim_args`: None
254
+ - `adafactor`: False
255
+ - `group_by_length`: False
256
+ - `length_column_name`: length
257
+ - `ddp_find_unused_parameters`: None
258
+ - `ddp_bucket_cap_mb`: None
259
+ - `ddp_broadcast_buffers`: False
260
+ - `dataloader_pin_memory`: True
261
+ - `dataloader_persistent_workers`: False
262
+ - `skip_memory_metrics`: True
263
+ - `use_legacy_prediction_loop`: False
264
+ - `push_to_hub`: False
265
+ - `resume_from_checkpoint`: None
266
+ - `hub_model_id`: None
267
+ - `hub_strategy`: every_save
268
+ - `hub_private_repo`: None
269
+ - `hub_always_push`: False
270
+ - `gradient_checkpointing`: False
271
+ - `gradient_checkpointing_kwargs`: None
272
+ - `include_inputs_for_metrics`: False
273
+ - `include_for_metrics`: []
274
+ - `eval_do_concat_batches`: True
275
+ - `fp16_backend`: auto
276
+ - `push_to_hub_model_id`: None
277
+ - `push_to_hub_organization`: None
278
+ - `mp_parameters`:
279
+ - `auto_find_batch_size`: False
280
+ - `full_determinism`: False
281
+ - `torchdynamo`: None
282
+ - `ray_scope`: last
283
+ - `ddp_timeout`: 1800
284
+ - `torch_compile`: False
285
+ - `torch_compile_backend`: None
286
+ - `torch_compile_mode`: None
287
+ - `dispatch_batches`: None
288
+ - `split_batches`: None
289
+ - `include_tokens_per_second`: False
290
+ - `include_num_input_tokens_seen`: False
291
+ - `neftune_noise_alpha`: None
292
+ - `optim_target_modules`: None
293
+ - `batch_eval_metrics`: False
294
+ - `eval_on_start`: False
295
+ - `use_liger_kernel`: False
296
+ - `eval_use_gather_object`: False
297
+ - `average_tokens_across_devices`: False
298
+ - `prompts`: None
299
+ - `batch_sampler`: no_duplicates
300
+ - `multi_dataset_batch_sampler`: proportional
301
+
302
+ </details>
303
+
304
+ ### Training Logs
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:----:|:-------------:|
307
+ | 0.0448 | 100 | 0.1819 |
308
+ | 0.0895 | 200 | 0.0985 |
309
+ | 0.1343 | 300 | 0.0879 |
310
+ | 0.1791 | 400 | 0.0601 |
311
+ | 0.2238 | 500 | 0.0644 |
312
+ | 0.2686 | 600 | 0.0586 |
313
+ | 0.3133 | 700 | 0.0731 |
314
+ | 0.3581 | 800 | 0.0636 |
315
+ | 0.4029 | 900 | 0.0622 |
316
+ | 0.4476 | 1000 | 0.0504 |
317
+ | 0.4924 | 1100 | 0.0603 |
318
+ | 0.5372 | 1200 | 0.0613 |
319
+ | 0.5819 | 1300 | 0.0546 |
320
+ | 0.6267 | 1400 | 0.0525 |
321
+ | 0.6714 | 1500 | 0.0606 |
322
+ | 0.7162 | 1600 | 0.0523 |
323
+ | 0.7610 | 1700 | 0.0581 |
324
+ | 0.8057 | 1800 | 0.0534 |
325
+ | 0.8505 | 1900 | 0.0531 |
326
+ | 0.8953 | 2000 | 0.0526 |
327
+ | 0.9400 | 2100 | 0.0498 |
328
+ | 0.9848 | 2200 | 0.0462 |
329
+ | 1.0295 | 2300 | 0.0555 |
330
+ | 1.0743 | 2400 | 0.0553 |
331
+ | 1.1191 | 2500 | 0.0505 |
332
+ | 1.1638 | 2600 | 0.0441 |
333
+ | 1.2086 | 2700 | 0.0365 |
334
+ | 1.2534 | 2800 | 0.0348 |
335
+ | 1.2981 | 2900 | 0.0406 |
336
+ | 1.3429 | 3000 | 0.0403 |
337
+ | 1.3876 | 3100 | 0.0409 |
338
+ | 1.4324 | 3200 | 0.0324 |
339
+ | 1.4772 | 3300 | 0.0285 |
340
+ | 1.5219 | 3400 | 0.0362 |
341
+ | 1.5667 | 3500 | 0.026 |
342
+ | 1.6115 | 3600 | 0.0271 |
343
+ | 1.6562 | 3700 | 0.0285 |
344
+ | 1.7010 | 3800 | 0.028 |
345
+ | 1.7457 | 3900 | 0.032 |
346
+ | 1.7905 | 4000 | 0.0324 |
347
+ | 1.8353 | 4100 | 0.0236 |
348
+ | 1.8800 | 4200 | 0.0267 |
349
+ | 1.9248 | 4300 | 0.0343 |
350
+ | 1.9696 | 4400 | 0.0234 |
351
+ | 2.0143 | 4500 | 0.0281 |
352
+ | 2.0591 | 4600 | 0.0272 |
353
+ | 2.1038 | 4700 | 0.0295 |
354
+ | 2.1486 | 4800 | 0.0251 |
355
+ | 2.1934 | 4900 | 0.0235 |
356
+ | 2.2381 | 5000 | 0.0219 |
357
+ | 2.2829 | 5100 | 0.0237 |
358
+ | 2.3277 | 5200 | 0.0283 |
359
+ | 2.3724 | 5300 | 0.0262 |
360
+ | 2.4172 | 5400 | 0.0218 |
361
+ | 2.4620 | 5500 | 0.0174 |
362
+ | 2.5067 | 5600 | 0.024 |
363
+ | 2.5515 | 5700 | 0.0185 |
364
+ | 2.5962 | 5800 | 0.019 |
365
+ | 2.6410 | 5900 | 0.0208 |
366
+ | 2.6858 | 6000 | 0.0188 |
367
+ | 2.7305 | 6100 | 0.0213 |
368
+ | 2.7753 | 6200 | 0.0251 |
369
+ | 2.8201 | 6300 | 0.0193 |
370
+ | 2.8648 | 6400 | 0.0175 |
371
+ | 2.9096 | 6500 | 0.0234 |
372
+ | 2.9543 | 6600 | 0.0172 |
373
+ | 2.9991 | 6700 | 0.0171 |
374
+ | 3.0439 | 6800 | 0.0215 |
375
+ | 3.0886 | 6900 | 0.0206 |
376
+ | 3.1334 | 7000 | 0.019 |
377
+ | 3.1782 | 7100 | 0.0166 |
378
+ | 3.2229 | 7200 | 0.0154 |
379
+ | 3.2677 | 7300 | 0.0178 |
380
+ | 3.3124 | 7400 | 0.0203 |
381
+ | 3.3572 | 7500 | 0.0174 |
382
+ | 3.4020 | 7600 | 0.0159 |
383
+ | 3.4467 | 7700 | 0.0149 |
384
+ | 3.4915 | 7800 | 0.0184 |
385
+ | 3.5363 | 7900 | 0.017 |
386
+ | 3.5810 | 8000 | 0.0133 |
387
+ | 3.6258 | 8100 | 0.0146 |
388
+ | 3.6705 | 8200 | 0.0148 |
389
+ | 3.7153 | 8300 | 0.0131 |
390
+ | 3.7601 | 8400 | 0.0184 |
391
+ | 3.8048 | 8500 | 0.0143 |
392
+ | 3.8496 | 8600 | 0.0137 |
393
+ | 3.8944 | 8700 | 0.0156 |
394
+ | 3.9391 | 8800 | 0.0171 |
395
+ | 3.9839 | 8900 | 0.0119 |
396
+
397
+
398
+ ### Framework Versions
399
+ - Python: 3.10.12
400
+ - Sentence Transformers: 3.3.1
401
+ - Transformers: 4.47.0
402
+ - PyTorch: 2.5.1+cu121
403
+ - Accelerate: 1.2.1
404
+ - Datasets: 3.3.0
405
+ - Tokenizers: 0.21.0
406
+
407
+ ## Citation
408
+
409
+ ### BibTeX
410
+
411
+ #### Sentence Transformers
412
+ ```bibtex
413
+ @inproceedings{reimers-2019-sentence-bert,
414
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
415
+ author = "Reimers, Nils and Gurevych, Iryna",
416
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
417
+ month = "11",
418
+ year = "2019",
419
+ publisher = "Association for Computational Linguistics",
420
+ url = "https://arxiv.org/abs/1908.10084",
421
+ }
422
+ ```
423
+
424
+ #### MultipleNegativesRankingLoss
425
+ ```bibtex
426
+ @misc{henderson2017efficient,
427
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
428
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
429
+ year={2017},
430
+ eprint={1705.00652},
431
+ archivePrefix={arXiv},
432
+ primaryClass={cs.CL}
433
+ }
434
+ ```
435
+
436
+ <!--
437
+ ## Glossary
438
+
439
+ *Clearly define terms in order to be accessible across audiences.*
440
+ -->
441
+
442
+ <!--
443
+ ## Model Card Authors
444
+
445
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
446
+ -->
447
+
448
+ <!--
449
+ ## Model Card Contact
450
+
451
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
452
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.2,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.2,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.47.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4264204d5aac4d4db33dce227c1077c0d944ac78a53b9c26cc80d0dc1c6a1038
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92262b29204f8fdc169a63f9005a0e311a16262cef4d96ecfe2a7ed638662ed3
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff