Tom Aarsen commited on
Commit
1427fd6
·
1 Parent(s): 9b8bd7b

Revert inadvertent config, tokenizer updates

Browse files

This reverts commit 37b7dae5f6e67224103bc19904748dafe6a74a34.

Files changed (6) hide show
  1. .gitattributes +0 -1
  2. README.md +62 -62
  3. config.json +34 -36
  4. special_tokens_map.json +1 -51
  5. tokenizer.json +2 -2
  6. tokenizer_config.json +1 -55
.gitattributes CHANGED
@@ -26,4 +26,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
  model.safetensors filter=lfs diff=lfs merge=lfs -text
29
- tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
  model.safetensors filter=lfs diff=lfs merge=lfs -text
 
README.md CHANGED
@@ -1,63 +1,63 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- - ar
6
- - zh
7
- - nl
8
- - fr
9
- - de
10
- - hi
11
- - in
12
- - it
13
- - ja
14
- - pt
15
- - ru
16
- - es
17
- - vi
18
- - multilingual
19
- datasets:
20
- - unicamp-dl/mmarco
21
- base_model:
22
- - nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large
23
- pipeline_tag: text-ranking
24
- library_name: sentence-transformers
25
- tags:
26
- - transformers
27
- ---
28
- # Cross-Encoder for multilingual MS Marco
29
-
30
- This model was trained on the [MMARCO](https://hf.co/unicamp-dl/mmarco) dataset. It is a machine translated version of MS MARCO using Google Translate. It was translated to 14 languages. In our experiments, we observed that it performs also well for other languages.
31
-
32
- As a base model, we used the [multilingual MiniLMv2](https://huggingface.co/nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large) model.
33
-
34
- The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
35
-
36
- ## Usage with SentenceTransformers
37
-
38
- The usage becomes easy when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
39
- ```python
40
- from sentence_transformers import CrossEncoder
41
- model = CrossEncoder('model_name')
42
- scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
43
- ```
44
-
45
-
46
-
47
-
48
- ## Usage with Transformers
49
-
50
- ```python
51
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
52
- import torch
53
-
54
- model = AutoModelForSequenceClassification.from_pretrained('model_name')
55
- tokenizer = AutoTokenizer.from_pretrained('model_name')
56
-
57
- features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
58
-
59
- model.eval()
60
- with torch.no_grad():
61
- scores = model(**features).logits
62
- print(scores)
63
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - ar
6
+ - zh
7
+ - nl
8
+ - fr
9
+ - de
10
+ - hi
11
+ - in
12
+ - it
13
+ - ja
14
+ - pt
15
+ - ru
16
+ - es
17
+ - vi
18
+ - multilingual
19
+ datasets:
20
+ - unicamp-dl/mmarco
21
+ base_model:
22
+ - nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large
23
+ pipeline_tag: text-ranking
24
+ library_name: sentence-transformers
25
+ tags:
26
+ - transformers
27
+ ---
28
+ # Cross-Encoder for multilingual MS Marco
29
+
30
+ This model was trained on the [MMARCO](https://hf.co/unicamp-dl/mmarco) dataset. It is a machine translated version of MS MARCO using Google Translate. It was translated to 14 languages. In our experiments, we observed that it performs also well for other languages.
31
+
32
+ As a base model, we used the [multilingual MiniLMv2](https://huggingface.co/nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large) model.
33
+
34
+ The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)
35
+
36
+ ## Usage with SentenceTransformers
37
+
38
+ The usage becomes easy when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
39
+ ```python
40
+ from sentence_transformers import CrossEncoder
41
+ model = CrossEncoder('model_name')
42
+ scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
43
+ ```
44
+
45
+
46
+
47
+
48
+ ## Usage with Transformers
49
+
50
+ ```python
51
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
52
+ import torch
53
+
54
+ model = AutoModelForSequenceClassification.from_pretrained('model_name')
55
+ tokenizer = AutoTokenizer.from_pretrained('model_name')
56
+
57
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
58
+
59
+ model.eval()
60
+ with torch.no_grad():
61
+ scores = model(**features).logits
62
+ print(scores)
63
  ```
config.json CHANGED
@@ -1,36 +1,34 @@
1
- {
2
- "architectures": [
3
- "XLMRobertaForSequenceClassification"
4
- ],
5
- "attention_probs_dropout_prob": 0.1,
6
- "bos_token_id": 0,
7
- "classifier_dropout": null,
8
- "eos_token_id": 2,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 384,
12
- "id2label": {
13
- "0": "LABEL_0"
14
- },
15
- "initializer_range": 0.02,
16
- "intermediate_size": 1536,
17
- "label2id": {
18
- "LABEL_0": 0
19
- },
20
- "layer_norm_eps": 1e-05,
21
- "max_position_embeddings": 514,
22
- "model_type": "xlm-roberta",
23
- "num_attention_heads": 12,
24
- "num_hidden_layers": 12,
25
- "pad_token_id": 1,
26
- "position_embedding_type": "absolute",
27
- "sentence_transformers": {
28
- "activation_fn": "torch.nn.modules.linear.Identity",
29
- "version": "4.1.0.dev0"
30
- },
31
- "torch_dtype": "float32",
32
- "transformers_version": "4.52.0.dev0",
33
- "type_vocab_size": 1,
34
- "use_cache": true,
35
- "vocab_size": 250002
36
- }
 
1
+ {
2
+ "_name_or_path": "nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 384,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 1536,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 514,
23
+ "model_type": "xlm-roberta",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "absolute",
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.18.0",
30
+ "type_vocab_size": 1,
31
+ "use_cache": true,
32
+ "vocab_size": 250002,
33
+ "sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity"
34
+ }
 
 
special_tokens_map.json CHANGED
@@ -1,51 +1 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "<unk>",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
- }
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a56def25aa40facc030ea8b0b87f3688e4b3c39eb8b45d5702b3a1300fe2a20
3
- size 17082734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62c24cdc13d4c9952d63718d6c9fa4c287974249e16b7ade6d5a85e7bbb75626
3
+ size 17082660
tokenizer_config.json CHANGED
@@ -1,55 +1 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "<s>",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "<pad>",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "</s>",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "250001": {
36
- "content": "<mask>",
37
- "lstrip": true,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "bos_token": "<s>",
45
- "clean_up_tokenization_spaces": false,
46
- "cls_token": "<s>",
47
- "eos_token": "</s>",
48
- "extra_special_tokens": {},
49
- "mask_token": "<mask>",
50
- "model_max_length": 512,
51
- "pad_token": "<pad>",
52
- "sep_token": "</s>",
53
- "tokenizer_class": "XLMRobertaTokenizer",
54
- "unk_token": "<unk>"
55
- }
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large", "tokenizer_class": "XLMRobertaTokenizer"}