dataautogpt3 commited on
Commit
98fac1c
·
verified ·
1 Parent(s): 5ab3c3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -1
README.md CHANGED
@@ -124,4 +124,47 @@ Sampler: DPM++ 2M SDE
124
  Scheduler: Karras
125
  Resolution: 1024x1024
126
 
127
- The custom-trained CLIP is a significant point of differentiation, as very few models incorporate this feature. Enjoy creating with the fully released ProteusV0.5!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  Scheduler: Karras
125
  Resolution: 1024x1024
126
 
127
+ The custom-trained CLIP is a significant point of differentiation, as very few models incorporate this feature. Enjoy creating with the fully released ProteusV0.5!
128
+
129
+
130
+ Use it with 🧨 diffusers
131
+ ```python
132
+ import torch
133
+ from diffusers import (
134
+ StableDiffusionXLPipeline,
135
+ KDPM2AncestralDiscreteScheduler,
136
+ AutoencoderKL
137
+ )
138
+
139
+ # Load VAE component
140
+ vae = AutoencoderKL.from_pretrained(
141
+ "madebyollin/sdxl-vae-fp16-fix",
142
+ torch_dtype=torch.float16
143
+ )
144
+
145
+ # Configure the pipeline
146
+ pipe = StableDiffusionXLPipeline.from_pretrained(
147
+ "dataautogpt3/ProteusV0.5",
148
+ vae=vae,
149
+ torch_dtype=torch.float16
150
+ )
151
+ pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
152
+ pipe.to('cuda')
153
+
154
+ # Define prompts and generate image
155
+ prompt = "a cat wearing sunglasses on the beach"
156
+ negative_prompt = ""
157
+
158
+ image = pipe(
159
+ prompt,
160
+ negative_prompt=negative_prompt,
161
+ width=1024,
162
+ height=1024,
163
+ guidance_scale=7,
164
+ num_inference_steps=50,
165
+ clip_skip=2
166
+ ).images[0]
167
+
168
+
169
+ image.save("generated_image.png")
170
+ ```