# AgriField3D: A Curated 3D Point Cloud Dataset of Field-Grown Plants From A Maize Diversity Panel ## Dataset Structure The dataset consists of two compressed `.zip` files, which contain the 3D point cloud data: ``` AgriField3D/ ├── FielGrwon_ZeaMays_RawPCD_100k.zip │ └── Contains 1045 high-resolution (100K points) `.ply` files representing full plant point clouds. │ ├── 0001.ply │ ├── 0002.ply │ ├── ... │ └── 1045.ply ├── FielGrwon_ZeaMays_SegmentedPCD_100k.zip │ └── Contains 520 high-resolution (100K points) `.ply` files of segmented plant models. │ ├── 0001.ply │ ├── 0002.ply │ ├── ... │ └── 0520.ply ``` ### Contents of the `.zip` Files - **`FielGrwon_ZeaMays_RawPCD_100k.zip`**: - Contains 1045 `.ply` files. Each file is a high-resolution 3D point cloud representing an entire maize plant. - **`FielGrwon_ZeaMays_SegmentedPCD_100k.zip`**: - Contains 520 `.ply` files. Each file represents a segmented model focusing on specific plant parts. ### How to Access 1. **Download the `.zip` files**: - [FielGrwon_ZeaMays_RawPCD_100k.zip](https://huggingface.co/datasets/BGLab/AgriField3D/resolve/main/FielGrwon_ZeaMays_RawPCD_100k.zip) - [FielGrwon_ZeaMays_SegmentedPCD_100k.zip](https://huggingface.co/datasets/BGLab/AgriField3D/resolve/main/FielGrwon_ZeaMays_SegmentedPCD_100k.zip) 2. **Extract the files**: ```bash unzip FielGrwon_ZeaMays_RawPCD_100k.zip unzip FielGrwon_ZeaMays_SegmentedPCD_100k.zip ``` 3. Use the extracted `.ply` files in tools like: - MeshLab - CloudCompare - Python libraries such as `open3d` or `trimesh`. ### Example Code to Visualize the `.ply` Files in Python ```python import open3d as o3d # Load and visualize a PLY file from the dataset pcd = o3d.io.read_point_cloud("FielGrwon_ZeaMays_RawPCD_100k/0001.ply") o3d.visualization.draw_geometries([pcd]) ```