--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label sequence: int64 splits: - name: train num_bytes: 380277965 num_examples: 53203 - name: validation num_bytes: 40200731 num_examples: 4834 - name: test num_bytes: 57450762 num_examples: 4774 download_size: 389851249 dataset_size: 477929458 - config_name: intents features: - name: id dtype: int64 - name: name dtype: 'null' - name: tags sequence: 'null' - name: regex_full_match sequence: 'null' - name: regex_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 40 num_examples: 2 download_size: 2862 dataset_size: 40 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - en --- # eurlex This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset eurlex = Dataset.from_hub("AutoIntent/eurlex") ``` ## Source This dataset is taken from `coastalcph/multi_eurlex` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python import datasets from autointent import Dataset def get_number_of_classes(ds: datasets.Dataset) -> int: return len(set(i for example in ds for labels in example for i in labels)) def parse(ds: datasets.Dataset, n_classes: int) -> datasets.Dataset: def transform(example: dict): return {"utterance": example["text"], "label": [int(i in example["labels"]) for i in range(n_classes)]} return ds.map(transform, remove_columns=ds.features.keys()) def get_low_resource_classes_mask(ds: datasets.Dataset, n_classes: int, fraction_thresh: float = 0.01) -> list[bool]: res = [0] * n_classes for sample in ds: for i, indicator in enumerate(sample["label"]): res[i] += indicator for i in range(n_classes): res[i] /= len(ds) return [(frac < fraction_thresh) for frac in res] def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]: res = [] for sample in ds: if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]: continue sample["label"] = [ indicator for indicator, low_resource in zip(sample["label"], mask, strict=True) if not low_resource ] res.append(sample) return res def remove_oos(ds: list[dict]): return [sample for sample in ds if sum(sample["label"]) != 0] if __name__ == "__main__": eurlex = datasets.load_dataset("coastalcph/multi_eurlex", "en", trust_remote_code=True) n_classes = get_number_of_classes(eurlex["train"]) train = parse(eurlex["train"], n_classes) test = parse(eurlex["test"], n_classes) validation = parse(eurlex["validation"], n_classes) mask = get_low_resource_classes_mask(train, n_classes) train = remove_oos(remove_low_resource_classes(train, mask)) test = remove_oos(remove_low_resource_classes(test, mask)) validation = remove_oos(remove_low_resource_classes(validation, mask)) eurlex_converted = Dataset.from_dict({ "train": train, "test": test, "validation": validation, }) ```