ygorg commited on
Commit
b39519c
·
verified ·
1 Parent(s): 5211360

Remove extra print (and extra tabs)

Browse files
Files changed (1) hide show
  1. E3C.py +25 -31
E3C.py CHANGED
@@ -45,7 +45,7 @@ class E3C(datasets.GeneratorBasedBuilder):
45
  BUILDER_CONFIGS += [
46
  datasets.BuilderConfig(name=f"{lang}_temporal", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
47
  ]
48
-
49
  DEFAULT_CONFIG_NAME = "French_clinical"
50
 
51
  def _info(self):
@@ -57,7 +57,7 @@ class E3C(datasets.GeneratorBasedBuilder):
57
  names = ["O","B-CLINENTITY","I-CLINENTITY"]
58
  elif self.config.name.find("temporal") != -1:
59
  names = ["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"]
60
-
61
  features = datasets.Features(
62
  {
63
  "id": datasets.Value("string"),
@@ -70,7 +70,7 @@ class E3C(datasets.GeneratorBasedBuilder):
70
  ),
71
  }
72
  )
73
-
74
  return datasets.DatasetInfo(
75
  description=_DESCRIPTION,
76
  features=features,
@@ -82,12 +82,8 @@ class E3C(datasets.GeneratorBasedBuilder):
82
 
83
  data_dir = dl_manager.download_and_extract(_URL)
84
 
85
- print(data_dir)
86
-
87
  if self.config.name.find("clinical") != -1:
88
-
89
- print("clinical")
90
-
91
  return [
92
  datasets.SplitGenerator(
93
  name=datasets.Split.TRAIN,
@@ -111,11 +107,9 @@ class E3C(datasets.GeneratorBasedBuilder):
111
  },
112
  ),
113
  ]
114
-
115
  elif self.config.name.find("temporal") != -1:
116
-
117
- print("temporal")
118
-
119
  return [
120
  datasets.SplitGenerator(
121
  name=datasets.Split.TRAIN,
@@ -161,14 +155,14 @@ class E3C(datasets.GeneratorBasedBuilder):
161
  def get_parsed_data(self, filepath: str):
162
 
163
  for root, _, files in os.walk(filepath):
164
-
165
  for file in files:
166
-
167
  with open(f"{root}/{file}") as soup_file:
168
-
169
  soup = BeautifulSoup(soup_file, "xml")
170
  text = soup.find("cas:Sofa").get("sofaString")
171
-
172
  yield {
173
  "CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text),
174
  "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
@@ -243,60 +237,60 @@ class E3C(datasets.GeneratorBasedBuilder):
243
  _labels = clinical_labels
244
  elif self.config.name.find("temporal") != -1:
245
  _labels = temporal_information_labels
246
-
247
  all_res.append({
248
  "id": key,
249
  "text": sentence[-1],
250
  "tokens": list(map(lambda token: token[2], filtered_tokens)),
251
  "ner_tags": _labels,
252
  })
253
-
254
  key += 1
255
-
256
  if self.config.name.find("clinical") != -1:
257
-
258
  if split != "test":
259
-
260
  ids = [r["id"] for r in all_res]
261
-
262
  random.seed(4)
263
  random.shuffle(ids)
264
  random.shuffle(ids)
265
  random.shuffle(ids)
266
 
267
  train, validation = np.split(ids, [int(len(ids)*0.8738)])
268
-
269
  if split == "train":
270
  allowed_ids = list(train)
271
  elif split == "validation":
272
  allowed_ids = list(validation)
273
-
274
  for r in all_res:
275
  if r["id"] in allowed_ids:
276
  yield r["id"], r
277
  else:
278
-
279
  for r in all_res:
280
  yield r["id"], r
281
-
282
  elif self.config.name.find("temporal") != -1:
283
-
284
  ids = [r["id"] for r in all_res]
285
-
286
  random.seed(4)
287
  random.shuffle(ids)
288
  random.shuffle(ids)
289
  random.shuffle(ids)
290
-
291
  train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
292
-
293
  if split == "train":
294
  allowed_ids = list(train)
295
  elif split == "validation":
296
  allowed_ids = list(validation)
297
  elif split == "test":
298
  allowed_ids = list(test)
299
-
300
  for r in all_res:
301
  if r["id"] in allowed_ids:
302
  yield r["id"], r
 
45
  BUILDER_CONFIGS += [
46
  datasets.BuilderConfig(name=f"{lang}_temporal", version="1.0.0", description=f"The {lang} subset of the E3C corpus") for lang in _LANGUAGES
47
  ]
48
+
49
  DEFAULT_CONFIG_NAME = "French_clinical"
50
 
51
  def _info(self):
 
57
  names = ["O","B-CLINENTITY","I-CLINENTITY"]
58
  elif self.config.name.find("temporal") != -1:
59
  names = ["O", "B-EVENT", "B-ACTOR", "B-BODYPART", "B-TIMEX3", "B-RML", "I-EVENT", "I-ACTOR", "I-BODYPART", "I-TIMEX3", "I-RML"]
60
+
61
  features = datasets.Features(
62
  {
63
  "id": datasets.Value("string"),
 
70
  ),
71
  }
72
  )
73
+
74
  return datasets.DatasetInfo(
75
  description=_DESCRIPTION,
76
  features=features,
 
82
 
83
  data_dir = dl_manager.download_and_extract(_URL)
84
 
 
 
85
  if self.config.name.find("clinical") != -1:
86
+
 
 
87
  return [
88
  datasets.SplitGenerator(
89
  name=datasets.Split.TRAIN,
 
107
  },
108
  ),
109
  ]
110
+
111
  elif self.config.name.find("temporal") != -1:
112
+
 
 
113
  return [
114
  datasets.SplitGenerator(
115
  name=datasets.Split.TRAIN,
 
155
  def get_parsed_data(self, filepath: str):
156
 
157
  for root, _, files in os.walk(filepath):
158
+
159
  for file in files:
160
+
161
  with open(f"{root}/{file}") as soup_file:
162
+
163
  soup = BeautifulSoup(soup_file, "xml")
164
  text = soup.find("cas:Sofa").get("sofaString")
165
+
166
  yield {
167
  "CLINENTITY": self.get_clinical_annotations(soup.find_all("custom:CLINENTITY"), text),
168
  "EVENT": self.get_annotations(soup.find_all("custom:EVENT"), text),
 
237
  _labels = clinical_labels
238
  elif self.config.name.find("temporal") != -1:
239
  _labels = temporal_information_labels
240
+
241
  all_res.append({
242
  "id": key,
243
  "text": sentence[-1],
244
  "tokens": list(map(lambda token: token[2], filtered_tokens)),
245
  "ner_tags": _labels,
246
  })
247
+
248
  key += 1
249
+
250
  if self.config.name.find("clinical") != -1:
251
+
252
  if split != "test":
253
+
254
  ids = [r["id"] for r in all_res]
255
+
256
  random.seed(4)
257
  random.shuffle(ids)
258
  random.shuffle(ids)
259
  random.shuffle(ids)
260
 
261
  train, validation = np.split(ids, [int(len(ids)*0.8738)])
262
+
263
  if split == "train":
264
  allowed_ids = list(train)
265
  elif split == "validation":
266
  allowed_ids = list(validation)
267
+
268
  for r in all_res:
269
  if r["id"] in allowed_ids:
270
  yield r["id"], r
271
  else:
272
+
273
  for r in all_res:
274
  yield r["id"], r
275
+
276
  elif self.config.name.find("temporal") != -1:
277
+
278
  ids = [r["id"] for r in all_res]
279
+
280
  random.seed(4)
281
  random.shuffle(ids)
282
  random.shuffle(ids)
283
  random.shuffle(ids)
284
+
285
  train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
286
+
287
  if split == "train":
288
  allowed_ids = list(train)
289
  elif split == "validation":
290
  allowed_ids = list(validation)
291
  elif split == "test":
292
  allowed_ids = list(test)
293
+
294
  for r in all_res:
295
  if r["id"] in allowed_ids:
296
  yield r["id"], r