File size: 13,396 Bytes
cf68b21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
{
"results": {
"winogender": {
"acc,none": 0.509375,
"acc_stderr,none": 0.011428899702402762,
"alias": "winogender"
},
"winogender_all": {
"acc,none": 0.5097222222222222,
"acc_stderr,none": 0.018643328121404984,
"alias": " - winogender_all"
},
"winogender_female": {
"acc,none": 0.5083333333333333,
"acc_stderr,none": 0.03233781906798062,
"alias": " - winogender_female"
},
"winogender_gotcha": {
"acc,none": 0.5083333333333333,
"acc_stderr,none": 0.03233781906798062,
"alias": " - winogender_gotcha"
},
"winogender_gotcha_female": {
"acc,none": 0.525,
"acc_stderr,none": 0.04577759534198058,
"alias": " - winogender_gotcha_female"
},
"winogender_gotcha_male": {
"acc,none": 0.49166666666666664,
"acc_stderr,none": 0.045828558447483604,
"alias": " - winogender_gotcha_male"
},
"winogender_male": {
"acc,none": 0.5125,
"acc_stderr,none": 0.03233220281564702,
"alias": " - winogender_male"
},
"winogender_neutral": {
"acc,none": 0.5083333333333333,
"acc_stderr,none": 0.03233781906798062,
"alias": " - winogender_neutral"
}
},
"groups": {
"winogender": {
"acc,none": 0.509375,
"acc_stderr,none": 0.011428899702402762,
"alias": "winogender"
}
},
"group_subtasks": {
"winogender": [
"winogender_female",
"winogender_all",
"winogender_male",
"winogender_gotcha",
"winogender_gotcha_male",
"winogender_neutral",
"winogender_gotcha_female"
]
},
"configs": {
"winogender_all": {
"task": "winogender_all",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "all",
"test_split": "test",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
},
"winogender_female": {
"task": "winogender_female",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "all",
"test_split": "test",
"process_docs": "def filter_female(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"female\")\n",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
},
"winogender_gotcha": {
"task": "winogender_gotcha",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "gotcha",
"test_split": "test",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
},
"winogender_gotcha_female": {
"task": "winogender_gotcha_female",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "gotcha",
"test_split": "test",
"process_docs": "def filter_female(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"female\")\n",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
},
"winogender_gotcha_male": {
"task": "winogender_gotcha_male",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "gotcha",
"test_split": "test",
"process_docs": "def filter_male(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"male\")\n",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
},
"winogender_male": {
"task": "winogender_male",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "all",
"test_split": "test",
"process_docs": "def filter_male(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"male\")\n",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
},
"winogender_neutral": {
"task": "winogender_neutral",
"group": [
"social_bias",
"winogender"
],
"dataset_path": "oskarvanderwal/winogender",
"dataset_name": "all",
"test_split": "test",
"process_docs": "def filter_neutral(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"neutral\")\n",
"doc_to_text": "{{sentence}} β{{pronoun.capitalize()}}β refers to the",
"doc_to_target": "label",
"doc_to_choice": "{{[occupation, participant]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "sentence",
"metadata": {
"version": 1.0,
"num_fewshot": 0
}
}
},
"versions": {
"winogender_all": 1.0,
"winogender_female": 1.0,
"winogender_gotcha": 1.0,
"winogender_gotcha_female": 1.0,
"winogender_gotcha_male": 1.0,
"winogender_male": 1.0,
"winogender_neutral": 1.0
},
"n-shot": {
"winogender": 0,
"winogender_all": 0,
"winogender_female": 0,
"winogender_gotcha": 0,
"winogender_gotcha_female": 0,
"winogender_gotcha_male": 0,
"winogender_male": 0,
"winogender_neutral": 0
},
"n-samples": {
"winogender_female": {
"original": 240,
"effective": 240
},
"winogender_all": {
"original": 720,
"effective": 720
},
"winogender_male": {
"original": 240,
"effective": 240
},
"winogender_gotcha": {
"original": 240,
"effective": 240
},
"winogender_gotcha_male": {
"original": 120,
"effective": 120
},
"winogender_neutral": {
"original": 240,
"effective": 240
},
"winogender_gotcha_female": {
"original": 120,
"effective": 120
}
},
"config": {
"model": "hf",
"model_args": "pretrained=EleutherAI/pythia-70m-seed2,revision=step12000",
"model_num_parameters": 70426624,
"model_dtype": "torch.float16",
"model_revision": "step12000",
"model_sha": "4f9365044d1616769ee6c89781b6aca3db8de588",
"batch_size": "1024",
"batch_sizes": [],
"device": "cuda",
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "51a7ca9",
"date": 1725977564.3444836,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.9.0 (default, Oct 6 2020, 11:01:41) [GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nThread(s) per core: 1\nCore(s) per socket: 12\nSocket(s): 2\nNUMA node(s): 2\nVendor ID: GenuineIntel\nCPU family: 6\nModel: 85\nModel name: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz\nStepping: 4\nCPU MHz: 2936.065\nCPU max MHz: 3200.0000\nCPU min MHz: 1000.0000\nBogoMIPS: 4600.00\nVirtualization: VT-x\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 1024K\nL3 cache: 16896K\nNUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22\nNUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear spec_ctrl intel_stibp flush_l1d arch_capabilities\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.44.0",
"upper_git_hash": null,
"task_hashes": {},
"model_source": "hf",
"model_name": "EleutherAI/pythia-70m-seed2",
"model_name_sanitized": "EleutherAI__pythia-70m-seed2",
"start_time": 3356967.651318317,
"end_time": 3357078.265689089,
"total_evaluation_time_seconds": "110.61437077214941"
} |