polypythias-evals
/
pythia-410m-seed1
/step114000
/EleutherAI__pythia-410m-seed1
/results_2024-09-10T09-50-05.628850.json
{ | |
"results": { | |
"winogender": { | |
"acc,none": 0.5375, | |
"acc_stderr,none": 0.011392911428362169, | |
"alias": "winogender" | |
}, | |
"winogender_all": { | |
"acc,none": 0.5444444444444444, | |
"acc_stderr,none": 0.0185730408419533, | |
"alias": " - winogender_all" | |
}, | |
"winogender_female": { | |
"acc,none": 0.55, | |
"acc_stderr,none": 0.032180193497809914, | |
"alias": " - winogender_female" | |
}, | |
"winogender_gotcha": { | |
"acc,none": 0.5166666666666667, | |
"acc_stderr,none": 0.03232433842302556, | |
"alias": " - winogender_gotcha" | |
}, | |
"winogender_gotcha_female": { | |
"acc,none": 0.55, | |
"acc_stderr,none": 0.04560517440787951, | |
"alias": " - winogender_gotcha_female" | |
}, | |
"winogender_gotcha_male": { | |
"acc,none": 0.48333333333333334, | |
"acc_stderr,none": 0.04580945392704764, | |
"alias": " - winogender_gotcha_male" | |
}, | |
"winogender_male": { | |
"acc,none": 0.5416666666666666, | |
"acc_stderr,none": 0.03222981603075176, | |
"alias": " - winogender_male" | |
}, | |
"winogender_neutral": { | |
"acc,none": 0.5416666666666666, | |
"acc_stderr,none": 0.03222981603075176, | |
"alias": " - winogender_neutral" | |
} | |
}, | |
"groups": { | |
"winogender": { | |
"acc,none": 0.5375, | |
"acc_stderr,none": 0.011392911428362169, | |
"alias": "winogender" | |
} | |
}, | |
"group_subtasks": { | |
"winogender": [ | |
"winogender_female", | |
"winogender_all", | |
"winogender_male", | |
"winogender_gotcha", | |
"winogender_gotcha_male", | |
"winogender_neutral", | |
"winogender_gotcha_female" | |
] | |
}, | |
"configs": { | |
"winogender_all": { | |
"task": "winogender_all", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "all", | |
"test_split": "test", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
}, | |
"winogender_female": { | |
"task": "winogender_female", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "all", | |
"test_split": "test", | |
"process_docs": "def filter_female(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"female\")\n", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
}, | |
"winogender_gotcha": { | |
"task": "winogender_gotcha", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "gotcha", | |
"test_split": "test", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
}, | |
"winogender_gotcha_female": { | |
"task": "winogender_gotcha_female", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "gotcha", | |
"test_split": "test", | |
"process_docs": "def filter_female(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"female\")\n", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
}, | |
"winogender_gotcha_male": { | |
"task": "winogender_gotcha_male", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "gotcha", | |
"test_split": "test", | |
"process_docs": "def filter_male(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"male\")\n", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
}, | |
"winogender_male": { | |
"task": "winogender_male", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "all", | |
"test_split": "test", | |
"process_docs": "def filter_male(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"male\")\n", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
}, | |
"winogender_neutral": { | |
"task": "winogender_neutral", | |
"group": [ | |
"social_bias", | |
"winogender" | |
], | |
"dataset_path": "oskarvanderwal/winogender", | |
"dataset_name": "all", | |
"test_split": "test", | |
"process_docs": "def filter_neutral(dataset: datasets.Dataset) -> datasets.Dataset:\n return filter_dataset(dataset, \"neutral\")\n", | |
"doc_to_text": "{{sentence}} ‘{{pronoun.capitalize()}}’ refers to the", | |
"doc_to_target": "label", | |
"doc_to_choice": "{{[occupation, participant]}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0, | |
"num_fewshot": 0 | |
} | |
} | |
}, | |
"versions": { | |
"winogender_all": 1.0, | |
"winogender_female": 1.0, | |
"winogender_gotcha": 1.0, | |
"winogender_gotcha_female": 1.0, | |
"winogender_gotcha_male": 1.0, | |
"winogender_male": 1.0, | |
"winogender_neutral": 1.0 | |
}, | |
"n-shot": { | |
"winogender": 0, | |
"winogender_all": 0, | |
"winogender_female": 0, | |
"winogender_gotcha": 0, | |
"winogender_gotcha_female": 0, | |
"winogender_gotcha_male": 0, | |
"winogender_male": 0, | |
"winogender_neutral": 0 | |
}, | |
"n-samples": { | |
"winogender_female": { | |
"original": 240, | |
"effective": 240 | |
}, | |
"winogender_all": { | |
"original": 720, | |
"effective": 720 | |
}, | |
"winogender_male": { | |
"original": 240, | |
"effective": 240 | |
}, | |
"winogender_gotcha": { | |
"original": 240, | |
"effective": 240 | |
}, | |
"winogender_gotcha_male": { | |
"original": 120, | |
"effective": 120 | |
}, | |
"winogender_neutral": { | |
"original": 240, | |
"effective": 240 | |
}, | |
"winogender_gotcha_female": { | |
"original": 120, | |
"effective": 120 | |
} | |
}, | |
"config": { | |
"model": "hf", | |
"model_args": "pretrained=EleutherAI/pythia-410m-seed1,revision=step114000", | |
"model_num_parameters": 405334016, | |
"model_dtype": "torch.float16", | |
"model_revision": "step114000", | |
"model_sha": "e3f197e747f179a121e894ff446f2b2a7d247b17", | |
"batch_size": "128", | |
"batch_sizes": [], | |
"device": "cuda", | |
"use_cache": null, | |
"limit": null, | |
"bootstrap_iters": 100000, | |
"gen_kwargs": null, | |
"random_seed": 0, | |
"numpy_seed": 1234, | |
"torch_seed": 1234, | |
"fewshot_seed": 1234 | |
}, | |
"git_hash": "51a7ca9", | |
"date": 1725986931.3830416, | |
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.9.0 (default, Oct 6 2020, 11:01:41) [GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4999.78\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect", | |
"transformers_version": "4.44.0", | |
"upper_git_hash": null, | |
"task_hashes": {}, | |
"model_source": "hf", | |
"model_name": "EleutherAI/pythia-410m-seed1", | |
"model_name_sanitized": "EleutherAI__pythia-410m-seed1", | |
"start_time": 3107416.515024155, | |
"end_time": 3107617.769735618, | |
"total_evaluation_time_seconds": "201.2547114631161" | |
} |