polypythias-evals / pythia-14m-seed2 /step1 /EleutherAI__pythia-14m-seed2 /results_2024-08-12T04-11-44.561923.json
Oskar Douwe van der Wal
New results
2ef66eb
raw
history blame
21.3 kB
{
"results": {
"lambada_openai": {
"perplexity,none": 3611714.469681177,
"perplexity_stderr,none": 349659.810942476,
"acc,none": 0.0,
"acc_stderr,none": 0.0,
"alias": "lambada_openai"
},
"hendrycks_math": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": "hendrycks_math"
},
"hendrycks_math_algebra": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_algebra"
},
"hendrycks_math_counting_and_prob": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_counting_and_prob"
},
"hendrycks_math_geometry": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_geometry"
},
"hendrycks_math_intermediate_algebra": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_intermediate_algebra"
},
"hendrycks_math_num_theory": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_num_theory"
},
"hendrycks_math_prealgebra": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_prealgebra"
},
"hendrycks_math_precalc": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": " - hendrycks_math_precalc"
}
},
"groups": {
"hendrycks_math": {
"exact_match,none": 0.0,
"exact_match_stderr,none": 0.0,
"alias": "hendrycks_math"
}
},
"group_subtasks": {
"hendrycks_math": [
"hendrycks_math_precalc",
"hendrycks_math_prealgebra",
"hendrycks_math_num_theory",
"hendrycks_math_intermediate_algebra",
"hendrycks_math_geometry",
"hendrycks_math_counting_and_prob",
"hendrycks_math_algebra"
],
"lambada_openai": []
},
"configs": {
"hendrycks_math_algebra": {
"task": "hendrycks_math_algebra",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "algebra",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"hendrycks_math_counting_and_prob": {
"task": "hendrycks_math_counting_and_prob",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "counting_and_probability",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"hendrycks_math_geometry": {
"task": "hendrycks_math_geometry",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "geometry",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"hendrycks_math_intermediate_algebra": {
"task": "hendrycks_math_intermediate_algebra",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "intermediate_algebra",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"hendrycks_math_num_theory": {
"task": "hendrycks_math_num_theory",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "number_theory",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"hendrycks_math_prealgebra": {
"task": "hendrycks_math_prealgebra",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "prealgebra",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"hendrycks_math_precalc": {
"task": "hendrycks_math_precalc",
"group": [
"math_word_problems"
],
"dataset_path": "EleutherAI/hendrycks_math",
"dataset_name": "precalculus",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"test_split": "test",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": remove_boxed(last_boxed_only_string(doc[\"solution\"])),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "Problem: {{problem}}\nAnswer:",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n retval = 0\n indices = [pos for pos, char in enumerate(results[0]) if char == \"$\"]\n if len(indices) <= 1:\n answer = results[0]\n else:\n answer = results[0][indices[0] + 1 : indices[-1]]\n\n if is_equiv(answer, remove_boxed(last_boxed_only_string(doc[\"solution\"]))):\n retval = 1\n\n results = {\n \"exact_match\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"Problem:"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"lambada_openai": {
"task": "lambada_openai",
"group": [
"lambada"
],
"dataset_path": "EleutherAI/lambada_openai",
"dataset_name": "default",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "perplexity",
"aggregation": "perplexity",
"higher_is_better": false
},
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "loglikelihood",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "{{text}}",
"metadata": {
"version": 1.0
}
}
},
"versions": {
"hendrycks_math_algebra": 1.0,
"hendrycks_math_counting_and_prob": 1.0,
"hendrycks_math_geometry": 1.0,
"hendrycks_math_intermediate_algebra": 1.0,
"hendrycks_math_num_theory": 1.0,
"hendrycks_math_prealgebra": 1.0,
"hendrycks_math_precalc": 1.0,
"lambada_openai": 1.0
},
"n-shot": {
"hendrycks_math": 0,
"hendrycks_math_algebra": 0,
"hendrycks_math_counting_and_prob": 0,
"hendrycks_math_geometry": 0,
"hendrycks_math_intermediate_algebra": 0,
"hendrycks_math_num_theory": 0,
"hendrycks_math_prealgebra": 0,
"hendrycks_math_precalc": 0,
"lambada_openai": 0
},
"n-samples": {
"lambada_openai": {
"original": 5153,
"effective": 5153
},
"hendrycks_math_precalc": {
"original": 546,
"effective": 546
},
"hendrycks_math_prealgebra": {
"original": 871,
"effective": 871
},
"hendrycks_math_num_theory": {
"original": 540,
"effective": 540
},
"hendrycks_math_intermediate_algebra": {
"original": 903,
"effective": 903
},
"hendrycks_math_geometry": {
"original": 479,
"effective": 479
},
"hendrycks_math_counting_and_prob": {
"original": 474,
"effective": 474
},
"hendrycks_math_algebra": {
"original": 1187,
"effective": 1187
}
},
"config": {
"model": "hf",
"model_args": "pretrained=EleutherAI/pythia-14m-seed2,revision=step1,",
"model_num_parameters": 14067712,
"model_dtype": "torch.float16",
"model_revision": "step1",
"model_sha": "3c114397768108a01b3fa9395bd3c607abef1f06",
"batch_size": "128",
"batch_sizes": [],
"device": "cuda",
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "51a7ca9",
"date": 1723460881.4871593,
"pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: CentOS Linux release 7.9.2009 (Core) (x86_64)\nGCC version: (GCC) 12.1.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.17\n\nPython version: 3.12.1 (main, Jan 12 2024, 16:49:08) [GCC 12.1.0] (64-bit runtime)\nPython platform: Linux-3.10.0-1160.119.1.el7.tuxcare.els2.x86_64-x86_64-with-glibc2.17\nIs CUDA available: True\nCUDA runtime version: 12.4.99\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nCPU(s): 32\nOn-line CPU(s) list: 0-31\nThread(s) per core: 1\nCore(s) per socket: 32\nSocket(s): 1\nNUMA node(s): 2\nVendor ID: AuthenticAMD\nCPU family: 23\nModel: 49\nModel name: AMD EPYC 7502P 32-Core Processor\nStepping: 0\nCPU MHz: 1500.000\nCPU max MHz: 2500.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 5000.08\nVirtualization: AMD-V\nL1d cache: 32K\nL1i cache: 32K\nL2 cache: 512K\nL3 cache: 16384K\nNUMA node0 CPU(s): 0-15\nNUMA node1 CPU(s): 16-31\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 hw_pstate sme ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip overflow_recov succor smca\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[conda] Could not collect",
"transformers_version": "4.40.2",
"upper_git_hash": null,
"task_hashes": {},
"model_source": "hf",
"model_name": "EleutherAI/pythia-14m-seed2",
"model_name_sanitized": "EleutherAI__pythia-14m-seed2",
"start_time": 843447.295591911,
"end_time": 843684.802160944,
"total_evaluation_time_seconds": "237.50656903302297"
}