Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
GMC-DRL commited on
Commit
720a3b9
·
verified ·
1 Parent(s): 61c57b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,3 +1,79 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # UAV Path Planning Benchmark Suite
6
+
7
+ This dataset provides a collection of 56 benchmark instances for testing and evaluating global optimization algorithms in the context of Unmanned Aerial Vehicle (UAV) path planning. It is based on the benchmark proposed in the paper:
8
+
9
+ > **Benchmarking Global Optimization Techniques for Unmanned Aerial Vehicle Path Planning**
10
+ > [arXiv:2501.14503](https://arxiv.org/abs/2501.14503)
11
+
12
+ The original implementation in MATLAB is available at:
13
+ 👉 [Zenodo Record (MATLAB Code)](https://zenodo.org/records/12793991)
14
+
15
+ We reimplemented the benchmark in Python using `matlab.engine`, converting the original `Model56.mat` file into a Python-friendly `.pkl` format for easy loading and experimentation.
16
+
17
+ ---
18
+
19
+ ## 📦 Dataset Overview
20
+
21
+ ### Problem Suite Composition
22
+
23
+ - A total of **56 benchmark instances** are included.
24
+ - These instances are selected from a pool of **5,000 automatically generated terrains**, with **56 diverse terrains** manually curated for their challenging features and realistic complexity.
25
+ - Each terrain may include:
26
+ - Flat plains
27
+ - Rolling hills
28
+ - Steep slopes
29
+ - Deep valleys
30
+ - Two **obstacle density configurations** are used:
31
+ - **Sparse scenario:** 15 cylindrical threats
32
+ - **Dense scenario:** 30 cylindrical threats
33
+ - Obstacles are modeled as **cylinders with varying heights and radii**, simulating real-world structures such as radar towers or missile defense units.
34
+ - The UAV must navigate from a **start point** to a **goal point**, each placed at opposite corners of the map.
35
+ - Both the start and goal are located in safe, threat-free regions to ensure feasible solution spaces.
36
+
37
+ ### Instance Composition
38
+
39
+ - Each of the **28 selected terrains** is evaluated under **2 obstacle configurations**, resulting in:
40
+ ```
41
+ 28 terrains × 2 threat settings = 56 total benchmark instances
42
+ ```
43
+
44
+ ---
45
+
46
+ ## 🔧 Format & Usage
47
+
48
+ - Each instance is stored in a Python pickle (`.pkl`) format, containing:
49
+ - Terrain elevation grid
50
+ - Obstacle locations and sizes
51
+ - Start and goal coordinates
52
+ - The dataset is suitable for benchmarking global optimization, black-box optimization (BBO), and reinforcement learning approaches to 3D path planning under constraints.
53
+
54
+ ---
55
+
56
+ ## 📄 Citation
57
+
58
+ If you use this dataset in your research, please cite the original paper:
59
+
60
+ ```
61
+ @article{shehadeh2025benchmarking,
62
+ title={Benchmarking global optimization techniques for unmanned aerial vehicle path planning},
63
+ author={Shehadeh, Mhd Ali and Kudela, Jakub},
64
+ journal={arXiv preprint arXiv:2501.14503},
65
+ year={2025}
66
+ }
67
+ ```
68
+
69
+ ## 🖼️ Example Visualization: Terrain53
70
+
71
+ Below is an example of one benchmark instance (`Terrain53`) under the sparse threat scenario.
72
+
73
+ <p align="center">
74
+ <img src="<URL_TO_3D_IMAGE>" alt="Terrain53 3D View" width="45%" style="display: inline-block; margin-right: 10px;">
75
+ <img src="<URL_TO_2D_IMAGE>" alt="Terrain53 2D Projection" width="45%" style="display: inline-block;">
76
+ </p>
77
+
78
+ - **Left:** 3D terrain surface with elevation and cylindrical threats (obstacles).
79
+ - **Right:** 2D top-down projection with start (bule) and goal (yellow) points visualized.