Hypercalemia commited on
Commit
1b1841b
·
verified ·
1 Parent(s): 3892dd4

Delete chemical_data.csv

Browse files
Files changed (1) hide show
  1. chemical_data.csv +0 -1073
chemical_data.csv DELETED
@@ -1,1073 +0,0 @@
1
- name,id,synthesis
2
- METHYLPHENIDATE,11968,"Methylphenidate (3.1.6) (Ritalin) is a commonly prescribed central nervous
3
- system(CNS)stimulant.Methylphenidateisusedtotreatattentiondeficitdisor-
4
- der,attentiondeficithyperactivitydisorder,andnarcolepsy,achronicsleepdis-
5
- order. However, a growing number of young individuals misuse or abuse
6
- methylphenidatetosustainattention,enhanceintellectualcapacity,andincrease
7
- memory [1(cid:1)4]. Side effects of methylphenidate include trouble sleeping, loss
8
- ofappetite,weightloss,dizziness,nausea,vomiting,andheadache.
9
- Methylphenidate (3.1.6) has been synthesized via condensation of pheny-
10
- lacetonitrile (3.1.1) with a 2-chloropyridin (3.1.2) at 110(cid:1)112(cid:3)C in toluene
11
- in the presence of NaNH , which gave 2-phenyl-2-(pyridin-2-yl)acetonitrile
12
- 2
13
- (3.1.3). The last was hydrolyzed to corresponding amide (3.1.4), which on
14
- treatment with HCl in methanol on heating gave methyl 2-phenyl-2-(pyridin-
15
- 2-yl)acetate (3.1.5). Hydrogenation of the pyridine ring to a piperidine ring
16
- in the obtained product in acetic acid on the Pt or PtO catalyst gave the
17
- 2
18
- desired methylphenidate (3.1.6)[5(cid:1)7](Scheme 3.1).
19
- N + NaNH 2 N N H 2SO 4 ONH 2 N CH 3OH OO N H 2-Pt OO N
20
- Cl N Toluene HCl H
21
- 110–12°C
22
- 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 Methylphenidate 3.1.6
23
- SCHEME3.1 Synthesisofmethylphenidate.
24
- Alternatively, 2-bromopyridine can be used instead of 2-chloropyridine
25
- [8]. A huge amount of chemical work is described on the separation and
26
- interconversion stereoisomers of methylphenidate [9(cid:1)14]. The absolute
27
- (2R,20R; threo) stereochemistry of the most active enantiomer, (2R,20R)-
28
- threo-methylphenidate,was proven [15,16]."
29
- PERHEXILINE,1216,"Perhexiline (3.1.11) was originally developed as an antianginal drug and was
30
- launched on the UK market as a racemate in 1975 under the trade name
31
- Piperidine-BasedDrugDiscovery.DOI:http://dx.doi.org/10.1016/B978-0-12-805157-3.00003-X
32
- Copyright©2017ElsevierLtd.Allrightsreserved. 103
33
- 104 Piperidine-BasedDrugDiscovery
34
- Pexid. It rapidly gained a reputation for efficacy in the management of
35
- angina pectoris. However, hepatic and neurological adverse effects in a small
36
- proportionofpatientsled toamarkeddeclineinitsusein1985.The drugwas
37
- originally classified as a coronary vasodilator, and later as a calcium channel
38
- antagonist. Recent data suggests that it acts as a cardiac metabolic agent
39
- throughinhibitionoftheenzyme,carnitinepalmitoyltransferase-1[17(cid:1)22].
40
- Perhexiline (3.1.11) consists of a piperidine framework with a 2,2-dicy-
41
- clohexylethyl substituent at the 2-position. The synthesis of racemic perhexi-
42
- line is based on nucleophilic addition of lithiated 2-picoline (3.1.7) to
43
- dicyclohexyl ketone (3.1.8) to give the corresponding tertiary alcohol (3.1.9),
44
- which undergoes HCL mediated dehydration forming alkene (3.1.10), the
45
- subsequent hydrogenation of which catalyzed by PtO gives desired perhexi-
46
- 2
47
- line (3.1.11) [23,24]. An alternative approach was demonstrated, using as
48
- starting ketone, bezophenone (3.1.12), which on reaction with lithiated 2-
49
- picoline gives tertiary alcohol (3.1.13), which after dehydration using hydro-
50
- chloric acid gives alkene (3.1.14), the hydrogenation of which catalyzed by
51
- PtO [25] or in presence Raney-Ni [26] or Rh-Al O [27] gives desired per-
52
- 2 2 3
53
- hexiline(3.1.11) (Scheme3.2).
54
- O
55
- HO N HCl N H 2/PtO 2
56
- 3.1.8
57
- BuLi O N
58
- N or PhLi 3.1.9 3.1.10 H/PtO, H
59
- 3.1.7 or2 Rane2 y-Ni,
60
- 3.1.12 HO N HCl N or Rh-Al 2O 3 Perhexiline 3.1.11
61
- 3.1.13 3.1.14
62
- SCHEME3.2 Synthesisofperhexiline.
63
- Two enantiomers, (1)- and ((cid:1))-perhexiline have different pharmacody-
64
- namic profiles. It has been suggested that the ((cid:1))-enantiomer is primarily
65
- responsible for the therapeutic effects, whereas the (1)-enantiomer is primar-
66
- ily responsible for the toxic effects [17]. Optically enriched perhexiline has
67
- been obtained by resolution of the 1,10-binaphthyl-2,20-diyl(hydrogen)phos-
68
- phatediastereomeric salts of perhexiline[28].
69
- Synthesis of both enantiomers of perhexiline in high enantiomeric excess
70
- through a stereoselective catalytic hydrogenation of the 2-(oxazolidin-2-one)-
71
- substituted-pyridine and the elucidation of the absolute configurations of the
72
- twoenantiomersofperhexilinewhichwasunknown,wasrecentlyreported[29]."
73
- PIPRADROL,259,"Pipradrol (3.1.17) is a dopamine reuptake inhibitor and norepinephrine reup-
74
- take inhibitor, a mild amphetamine type psychostimulant with action similar
75
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 105
76
- to methylphenidate. Pipradrol was developed in the 1950s as an antidepres-
77
- sant and was used for treatment of obesity and dementia, but the adverse
78
- effects associated with its use and its abuse potential led to its withdrawal
79
- and international control [30].
80
- Pipradrol (3.1.17) was synthesized from pyridyl Grignard reagent prepared
81
- from 2-pyridyl bromide (3.1.15) and bezophenone (3.1.12), which gave diphe-
82
- nylpydinemethanol (3.1.16) reduced catalytically to desired pipradrol (3.1.17)
83
- [31,32]. Enantiomers of pipradrol were synthesized from (R)- and (S)- pipecolic
84
- acidethers(3.1.18)andtheprobableconformationofthebasewasdeduced.All
85
- ofthecentralstimulantactivityresidedin(R)-pipradrol,butboththe(R)and(S)
86
- isomerspossessedanticonvulsantproperties[33](Scheme3.3).
87
- Mg, EtMgBr OH OH
88
- Ether or
89
- Diethyl cellosolve N H 2/PtO 2 N PhMgBr
90
- N Br O 3.1.12 EtOH H Ether MeOOC N
91
- 3.1.15 3.1.16 Pipradrol 3.1.17 3.1.18
92
- SCHEME3.3 Synthesisofpipradrol."
93
- MEFLOQUINE,5370,"Mefloquine(3.1.27),soldunderthebrandnameLariam,isanorallyadminis-
94
- tered very potent blood schizontocide that has been marketed since 1990 for
95
- both malaria prophylaxis and for acute treatment of falciparum malaria. It is
96
- a long-acting antimalarial drug known for its efficacy against chloroquine-
97
- and SP-resistant Plasmodium falciparum [34(cid:1)37]. Mefloquine can cause
98
- serious side effects that include nervous system changes.
99
- The synthesis of mefloquine (3.1.27) began with the synthesis quinolin-4-
100
- ol (3.1.21) obtained by polyphosphoric acid condensation of the ethyl 4,4,4-
101
- trifluoroacetoacetate (3.1.19) with O-trifluoromethylaniline (3.1.20). A further
102
- conversion of prepared (3.1.21) by POBr into the 4-bromoquinoline (3.1.22)
103
- 3
104
- led to the transformation of the last 4-Li derivative (3.1.23) followed by CO
105
- 2
106
- carboxylation gave cinclioninic acid (3.1.24). Addition of 2-pyridyllithium
107
- (3.1.25) gavethepyridyl ketone(3.1.26).Hydrogenationwith H -PtO gave a
108
- 2 2
109
- goodyieldofdesiredmefloquine(3.1.27)[38,39](Scheme3.4).
110
- F 3CO O OEt+F 3C
111
- HN
112
- 15P 0P °A
113
- C F
114
- 3F C3C
115
- N OHP 1O 40B °r C3
116
- FF 3C3C
117
- N
118
- Br
119
- n E-B thu eL ri
120
- F
121
- 3F C3C
122
- N
123
- LipC owO
124
- Ed2
125
- t
126
- e
127
- h(d
128
- r
129
- eer ry
130
- d)
131
- 2
132
- 3.1.19 3.1.20 3.1.21 3.1.22 3.1.23
133
- F 3C
134
- N Li
135
- F 3C F 3C
136
- N 3.1.25 N H 2/PtO 2 N
137
- F 3C COOH Ether F 3C
138
- O
139
- N EtOH F 3C OHN
140
- H
141
- 3.1.24 3.1.26 Mefloquine 3.1.27
142
- SCHEME3.4 Synthesisofmefloquine.
143
- 106 Piperidine-BasedDrugDiscovery
144
- None of the optically active forms of mefloquine (3.1.27) resolved via its
145
- hydrochloride salt with (1)- and ((cid:1))-3-bromo-8-camphorsulfonic acid
146
- ammonium salts showed any significant differences in antimalarial activity
147
- [40]."
148
- MEPIVACAINE,4176,"Many local anesthetics are presently available for clinical use, and among
149
- them many derivatives of 2-substituted piperidines. The choice of a particu-
150
- lar agent for a particular case is based mainly on its clinical and pharmaco-
151
- logical features.
152
- Mepivacaine(3.1.31),launchedonthemarketasCarbocaineandPolocaine,
153
- is a local anesthetic with a reasonably rapid onset and medium duration of
154
- action that became available in the 1960s. Mepivacaine exerts its local anes-
155
- thetic effect by blocking voltage-gated sodium channels in peripheral neurons,
156
- whichcreatestemporary anesthesia (lackoffeelingornumbness).Mepivacaine
157
- is used for causing numbness during surgical procedures, labor, or delivery
158
- [41,42].Itmaycausedizziness,drowsiness,orblurredvision.
159
- Two basic methods for the synthesis of mepivacaine are proposed. The first
160
- comprises the transformation of ethyl 1-methylpipecolate (3.1.30) to
161
- 1-methylpiperidine-2-carboxylicacidamidewithmagnesium(2,6-dimethylphenyl)
162
- amidebromide(3.1.29)underrefluxinether.Amagnesiumderivative(3.1.29),in
163
- turn, was prepared via interaction of 2,6-xylidine (3.1.28) with ethylmagnesium
164
- bromide[43(cid:1)45].
165
- Inanothermethod,picolinicacidwasconvertedtoitsamide(3.1.32),hydro-
166
- genated over platinum on carbon catalyst, and alkylated at the piperidine ring
167
- nitrogenwithformalinusingpalladiumoncarbon[43,45,46](Scheme3.5).
168
- O
169
- N
170
- H OEt O N O N O N
171
- NH 2EtMgBr NMgBr 3.1.30 NH H 2/Pd-C NHH H 2/Pt-C NH
172
- Ether Ether CH 2O EtOH, HCl
173
- Reflux H 2O
174
- 3.1.28 3.1.29 Mepivacaine 3.1.31 3.1.33 3.1.32
175
- SCHEME3.5 Synthesisofmepivacaine.
176
- (1)-Mepivacaine(cid:1)(S)-configuration is a longer-acting local anesthetic
177
- than the mixture enantiomers obtained during synthesis [47]."
178
- ROPIVACAINE,6847,"Ropivacaine (3.1.37) (Naropin) is the pure S((cid:1))-enantiomer of propivacaine
179
- releasedfor clinicaluse in1996.It is along-acting, well toleratedlocal anes-
180
- thetic agent and first produced as a pure enantiomer. Its effects and
181
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 107
182
- mechanism of action are similar to other local anesthetics working via
183
- reversible inhibition of sodium ion influx in nerve fibers. It may be a pre-
184
- ferred option among other drugs among this class of compounds because of
185
- its reduced CNS and cardiotoxic potential and its lower propensity for motor
186
- block inthe management ofpostoperative pain and labor pain [48(cid:1)58].
187
- Thesynthesisofropivacaine(3.1.37)wascarriedoutstartingwithL-pipeco-
188
- licacid(3.1.34),preparedbyaresolutionof(6)-pipecolicacidwith(1)-tartaric
189
- acid, which was dissolved in acetyl chloride and converted to acid chloride
190
- (3.1.35) with phosphorus pentachloride. The obtained compound (3.1.35) dis-
191
- solvedin toluenea solutionof2,6-xylidine(3.1.28) dissolved in themixture of
192
- equal volumes of acetone, and N-methyl-2-pyrrolidone was added at 70(cid:3)C to
193
- give (1)-L-pipecolic acid-2,6-xylidide (3.1.36). Reactionof this compoundwith
194
- propyl bromide in presence of potassium carbonate in i-PrOH/H O gave the
195
- 2
196
- desiredropivacaine(3.1.37)[59](Scheme3.6).
197
- NH
198
- 2
199
- PCl 3 3.1.28 O N PrBr O N
200
- O N AcCl O N Toluene, NH H K 2CO 3 NH
201
- OH H Cl H Acetone/NMP i-PrOH/HO
202
- 2
203
- Ropivacaine
204
- 3.1.34 3.1.35 3.1.36 3.1.37
205
- SCHEME3.6 Synthesisofropivacaine.
206
- Another approach for the synthesis of ropivacaine (3.1.37) was proposed
207
- via aresolution ofenantiomers ofchiral pipecolic acid-2,6-xylidide [60]."
208
- BUPIVACAINE (21293) AND LEVOBUPIVACAINE,1976,"Bupivacaine (3.1.41) (Marcaine) is a local anesthetic of great potency and
209
- long duration that has been widely used for years, but it has cardio and CNS
210
- toxicsideeffects. Formanyyearsitwasnearlytheonly localanestheticappli-
211
- cable to almost all kinds of loco-regional anesthetic techniques, and nowa-
212
- days,inmanyoccasions,itisstilltheonlyalternativeavailable[61(cid:1)64].
213
- Bupivacaine is currently used in racemic form. At high doses, however,
214
- the racemate is potentially hazardous dueto toxicity problems.
215
- Currently, racemic bupivacaine (3.1.41) is produced from picolinic acid
216
- (3.1.38) either by reduction to pipecolic acid (3.1.39) and then, after conver-
217
- sion to corresponding acid chloride (3.1.40) coupling with 2,6-xylidine to
218
- give pipecolic acid-2,6-xylidide (3.1.33), or by reducing the pyridyl amide
219
- (3.1.43) prepared from picolinic acid chloride (3.1.42) over platinum oxide.
220
- The amide intermediate (3.1.33), which can also be used to prepare the anes-
221
- thetics ropivacaine (3.1.37) and mepivacaine (3.1.31), was transformed to
222
- desired bupivacaine (3.1.41) either by direct alkylation using butyl bromide
223
- and potassium carbonate or by reductive amination using butyraldehyde
224
- [45,59,65(cid:1)69](Scheme3.7).
225
- 108 Piperidine-BasedDrugDiscovery
226
- NH
227
- 2
228
- H 2/PtO 2 PCl 3 3.1.28
229
- EtOH, AcOH O N AcCl O N Toluene,
230
- OHH Cl H Acetone/NMP
231
- 3.1.39 3.1.40
232
- BuBr
233
- O N NH O N K 2CO 3or O N
234
- OH 2 NHH NH
235
- 3.1.38 SOCl 2 3.1.28 O N H 2/PtO 2 P Hr CC OH OO H,
236
- Reflux O N Toluene NH H 2O/HCl 3.1.33 Bupivacaine3 .1.41
237
- Cl
238
- 3.1.42 3.1.43
239
- SCHEME3.7 Synthesisofbupivacaine.
240
- Enantiomers of bupivacaine can be prepared via diastereomeric salt reso-
241
- lution with tartaric acid or by resolution of the amide (3.1.33) with O,
242
- O-dibenzoyltartaricacidfollowed by alkylation [47,70].
243
- One of enantiomers, S((cid:1)) isomer of the racemic bupivacaine (levobupiva-
244
- caine), has equal potency but less cardiotoxic and CNS effects in comparison
245
- with both R(1) bupivacaine and bupivacaine racemate. The reduced toxicity of
246
- levobupivacaine(3.1.48)givesawidersafetymargininclinicalpractice[71,72].
247
- Stereospecific synthesis of levobupivacaine from (S)-lysine have been
248
- proposed (Scheme3.8).
249
- NH
250
- 2
251
- HO O
252
- O
253
- NN aa ONO Ac2,
254
- ,
255
- HO O
256
- O 3.1.28
257
- H 2N N O AcOH AcO N O DCC
258
- H H
259
- 3.1.44 3.1.45
260
- 1. KCO, BuBr,
261
- HN OO 2M
262
- .
263
- e T2 O sCH I3
264
- ,
265
- HN OO H 2/Pd-C O NHN
266
- H
267
- K P2 rC CO H3 Oo ,r O NHN
268
- AcO N O EtN TsO N O HCOOH
269
- H 3 H
270
- Levobupivacaine
271
- 3.1.46 3.1.47 3.1.33 3.1.48
272
- SCHEME3.8 Synthesisoflevobupivacaine.
273
- Treatment of N-CBZ (S)-lysine (3.1.44) with sodium nitrite in acetic acid
274
- yields the acetate (3.1.45). The prepared acetate (3.1.45) was then coupled
275
- with dimethyl aniline using N,N0-dicyclohexylcarbodiimide to give the amide
276
- (3.1.46)ingoodyield.Theacetategroupwasthenconvertedintothetosylate
277
- (3.1.47), which was deprotected and cyclized stereospecifically in one-pot
278
- reaction to give the amide (3.1.33) in high yield. Alkylation is easily
279
- achieved using an alkyl bromide and K CO without any racemization.
280
- 2 3
281
- Alkylation can also be carried out using butyraldehyde/formic acid although
282
- the former is amuchsimpler process[73] (Scheme3.8).
283
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 109"
284
- FLECAINIDE,3638,"Flecainide (3.1.54), sold under the trade name (Tambocor), is an antiarrhyth-
285
- micdrugusedtopreventandtreattachyarrhythmias,awidevarietyofcardiac
286
- arrhythmias including paroxysmal atrial fibrillation, paroxysmal supraventric-
287
- ular tachycardia and ventricular tachycardia, and has been used extensively
288
- worldwide over the last 25 years. It is a sodium channel blocker that is effec-
289
- tivemedicinefortachyarrhythmia,forwhichtheotherantiarrhythmicmedica-
290
- tion is not effective. Flecainide is also effective in the treatment of
291
- catecholaminergic polymorphic ventricular tachycardia but, in this condition,
292
- its mechanism of actionis contentious.It can be given either intravenously or
293
- orally and its pharmacokinetic properties allow for a relatively long (12
294
- hours) effect. Flecainide is an antiarrhythmic agent that has the potential to
295
- be considered an narrow therapeutic index drug that has a narrow window
296
- between its effective dose and a dose at which it can produce adverse toxic
297
- effects (dizziness, vision problems, shortness of breath, headache, nausea,
298
- vomiting, stomach pain, diarrhea, constipation, tremor or shaking, tiredness,
299
- weakness,anxiety,depression,numbness,ortingling)[74(cid:1)79].
300
- The original synthesis of flecainide is described on the Scheme 3.9,
301
- where a solution of 2,5-dihydroxybenzoic acid (3.1.49) in acetone was added
302
- to a suspension of KHCO in acetone followed by a solution of 2,2,2-tri-
303
- 3
304
- fluoroethyl trifluoromethanesulfonate (3.1.50) and stirred under reflux for 72
305
- hours to give 2,2,2-trifluoroethyl 2,5-bis(2,2,2-trifluoroethoxy)benzoate
306
- (3.1.51). The key step in this route is aminolysis. For that purpose obtained
307
- benzoate (3.1.51) was added to a stirred solution of 2-aminomethylpyridine
308
- (3.1.52) in glyme to give (3.1.53). Catalytic hydrogenation of the resultant
309
- N-(2-pyridylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide (3.1.54) was
310
- carried outinAcOH over PtO togive desired flecainide(3.1.54) [80(cid:1)83].
311
- 2
312
- A significant simplification in the synthesis was achieved by the use of
313
- 2-aminmethylpiperidine (3.1.55) [84] (Scheme 3.9).
314
- N
315
- O OH O O CF 3 H 2N N O NH
316
- OH +F 3C SO KHCO 3 O CF 3 3.1.52 O CF 3
317
- HO O O CF 3 RA efc lue xto 7n 2e
318
- h
319
- F 3C O Glyme F 3C O
320
- 3.1.49 3.1.50 3.1.51 3.1.53
321
- H/PtO
322
- 2 2
323
- AcOH
324
- N
325
- H 2N
326
- N
327
- O NHH
328
- H O CF
329
- 3.1.55 3
330
- Glyme FC O
331
- 3
332
- Flecainide 3.1.54
333
- SCHEME3.9 Synthesisofflecainide.
334
- 110 Piperidine-BasedDrugDiscovery"
335
- ENCAINIDE,682,"Encainide (3.1.62), formerly marketed as Enkaid, is an antiarrhythmic drug
336
- with class IC activity and has been used in the treatment of life-threatening
337
- ventricular arrhythmias, symptomatic ventricular arrhythmias, and supraven-
338
- tricular arrhythmias. The most common noncardiac side effects were dizzi-
339
- ness and blurred vision and proarrhythmic effects. Encainide was associated
340
- with increased death rates in patients who had asymptomatic heart rhythm
341
- abnormalities after a recent heart attack and was withdrawn from the US
342
- market in 1991 [85(cid:1)89].
343
- The first step in practically all proposed methods for encainide synthesis
344
- is based on condensation of picoline (3.1.56) or picolinium salts (3.1.63)
345
- (methiodide, methsulfate) with 2-nitrobenzaldehyde (3.1.57). In some patents
346
- and papers a mixture of picoline as well as the aforementioned aldehyde was
347
- refluxed in acetic anhydride to give 2-[2-(2-Nitrophenyl)ethenyl-2]pyridine
348
- (3.1.57) [90(cid:1)93]. In others a mixture of previously prepared picolinium salts
349
- (3.1.63) and 2-nitrobenzaldehyde (3.1.57) was refluxed in methanol in the
350
- presence of a catalytic amount of piperidine to give product (3.1.64), which
351
- was dehydrated on reflux in the mixture of acetic acid, acetic anhydride and
352
- potassium acetateto give (3.1.65)[94,95].
353
- A solution of 2-[2-(2-nitrophenyl)ethenyl-2]pyridine (3.1.57) in ethanol
354
- was hydrogenated over Pd-C catalyst forming 2-[2-(2-aminophenyl)ethyl-2]
355
- pyridine (3.1.58). The obtained product was dissolved in pyridine and acyl-
356
- ated with 4-anisoyl chloride (3.1.59) at 70(cid:3)C to give amide (3.1.60). The last
357
- was dissolved in warm acetonitrile, treated with dimethyl sulfate (or methyl
358
- iodide), and heated to 70(cid:3)C. The resulted crystalline salt (3.1.61) was hydro-
359
- genatedinethanolusing platinum oxide togive desired encainide (3.1.62).
360
- In the method started from picolinium salts (3.1.63) (methiodide, meth-
361
- sulfate), the salt (3.1.65) obtained after dehydration of (3.1.64) was hydroge-
362
- nated over a platinum oxide catalyst to give 2-(2-(1-methylpiperidin-2-yl)
363
- ethyl)aniline (3.1.66), which was acylated with 4-anisoyl chloride 4- (3.1.59)
364
- inacetoneto give desired encainide (3.1.62) (Scheme 3.10).
365
- Another interesting method for the synthesis of encainide was proposed,
366
- according to which methyl anthranilate (3.1.67) was acylated with 4-anisoyl
367
- chloride (3.1.59) in dichloromethane solution to give amide (3.1.68). The
368
- obtained product on reaction with 2-pyridyllithium (3.1.69) formed product
369
- (3.1.70) underwent one-pot hydrogenation with Pt-C AcOH, followed by addi-
370
- tion of Pd-C catalyst, and reductive methylation with formalin in the presence
371
- ofPd-Ctogiveencainide(3.1.62)withgoodyield[96](Scheme3.11)."
372
- THIORIDAZINE,6558,"Thioridazine (3.1.73) (Mellaril), is one of the older, first-generation typical
373
- antipsychotic oral medications used not only for management of
374
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 111
375
- CHO
376
- O
377
- O
378
- 3.1.N 5O 72 NO 2 H 2/Pd-C NH 2 3.1.59 Cl
379
- N Ac 2O N EtOH N Pyridine
380
- Reflux
381
- 3.1.56 3.1.58
382
- O
383
- O O
384
- OO S OO H 2/PtO
385
- 2 HN O
386
- HN O MeCN HN O + EtOH N
387
- 3.1.60N 3.1.61N OO
388
- S
389
- OO-
390
- En 3c .1a .i 6n 2ide
391
- O
392
- O
393
- Cl
394
- Acetone
395
- CHO 3.1.59
396
- AcOH,
397
- N+ OO S OO- P Mip3 ee. t1 hri. adN 5 ni7O n oe l2 NO OH 2 N+ OO S OO- A RA Ecc etO O2 flO uN H x, a NO 2 N+ OO S OO- H E2 tO/P Ht NH 2 N
398
- 3.1.63 3.1.64 3.1.65 3.1.66
399
- SCHEME3.10 Synthesisofencainide.
400
- O O O 1. H 2/Pt, AcOH O
401
- NH 2 COOCH 3O 3.1.59 Cl Li 3.1.6N 9 32 .. H H2 2/P /Pd d- -C C, CH 2O
402
- CH 2Cl 2 O NH THF O NHO HN O
403
- COOCH 3 N N
404
- 3.1.67 3.1.68 3.1.70 Encainide 3.1.62
405
- SCHEME3.11 Synthesisofencainide.
406
- schizophrenia but is also widely used for the relief of anxiety, agitation,
407
- mania, manic depressive psychosis, and behavioral problems. However, evi-
408
- dence of cardiac complications led to the restriction of its use from 2000 and
409
- withdrawal worldwide in 2005 because it caused severe cardiac arrhythmias
410
- and excessive death rates associated with its use [97(cid:1)103].
411
- It has been shown recently that thioridazine has in vitro activity against
412
- multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of
413
- Mycobacterium tuberculosis, and is able to cure antibiotic-susceptible and
414
- -resistant pulmonary tuberculosis infections. Under proper cardiac evalua-
415
- tion procedures, it is safe and does not produce any known cardiopathy
416
- [104(cid:1)107].
417
- The synthesis of thioridazine was achieved through reaction of 2-
418
- (methylthio)-10H-phenothiazine (3.1.71) and 2-(2-chloroethyl)-N-methylpi-
419
- peridine (3.1.72) in refluxing xylene in the presence of sodium amide to give
420
- desired thioridazine (3.1.73)[108(cid:1)110](Scheme3.12).
421
- 112 Piperidine-BasedDrugDiscovery
422
- S NaNH 2 N N
423
- S N + Cl N Reflux S
424
- H
425
- S
426
- 3.1.71 3.1.72 Thioridazine 3.1.73
427
- SCHEME3.12 Synthesisofthioridazine."
428
- RIMITEROL,219,"Rimiterol (3.1.82) is a third-generation, short-acting selective β2-adrenore-
429
- ceptoragonist used for the treatment of bronchospasm.
430
- It is not effective by the oral route of administration, but may be of value
431
- intheintravenoustherapyofsevereasthma.Rimiterolisavailableinpressur-
432
- ized aerosols. There have been no reports of significant subjective side
433
- effects following the acute administration of rimiterol by aerosol. There are
434
- no specific contraindications to rimiterol, but it should be given with care to
435
- patients with thyrotoxicosis, cardiovascular disease, diabetes mellitus, renal,
436
- or hepatic dysfunction [111(cid:1)118].
437
- Synthetic routes to rimiterol (3.1.82) are described. For that purpose 3,4-
438
- dimethoxyphenyl-2-pyridylcarbinol (3.1.77) was prepared by reaction
439
- between veratraldehyde (3.1.74) and picolinic acid (3.1.75) on reflux in p-
440
- cumene, or by treatment of the same aldehyde (3.1.74) with 2-pyridyllithium
441
- (3.1.76) prepared from 2-bromopyridine and n-butyllithium in ether.
442
- Obtained carbinol (3.1.77) was oxidized to the corresponding ketone (3.1.80)
443
- by potassium permanganate in water at 70(cid:3)C, or by dimetliylsulphoxide-
444
- acetic anhydride mixtures, or by air in boiling nitrobenzene. An alternative
445
- approach for the synthesis of ketone (3.1.81) was proposed via acylation of
446
- veratrole (3.1.78) with picolinic acid chloride (3.1.79) in nitrobenzene in the
447
- presence ofaluminum chloride.
448
- The protecting methoxy groups in (3.1.80) were changed to hydroxyl
449
- groups in boiling hydrobromic acid and the product (3.1.81) hydrogenated in
450
- methanol over platinum oxide to give desired rimiterol (3.1.82) [119(cid:1)122]
451
- (Scheme 3.13)."
452
- LOBELINE,1914,"Lobeline (3.1.90) is a plant alkaloid, the main constituent of the 20 known of
453
- Lobelia inflata, known as Indian tobacco because native Americans smoked
454
- the driedleavesasa substitutefor tobacco.
455
- Lobeline has a long history of therapeutic use and, and during the 19th
456
- century it was prescribed as an emetic or a respiratory stimulant used to treat
457
- asthma, collapse, and anesthetic accidents. Lobeline has multiple mechan-
458
- isms ofaction.
459
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 113
460
- N COOH KMnO/ HO
461
- 4 2
462
- 3.1.75
463
- p-Cumene O AcO, or
464
- O HO N AS ir, Nitro2 benzene O N N 3.1.7C 9OCl
465
- Nitrobenzene O
466
- O O 3N .1.7L 6i O O O O O
467
- 3.1.74 Ether 3.1.77 3.1.80 3.1.78
468
- HBr
469
- HO N O N
470
- H H 2/PtO 2
471
- CHOH
472
- HO 3 HO
473
- OH OH
474
- Rimiterol 3.1.82 3.1.81
475
- SCHEME3.13 Synthesisofrimiterol.
476
- Lobeline is a high affinity compound for nicotinic acetylcholine recep-
477
- tors, and it is considered a promising candidate for pharmacotherapy of
478
- addiction and abuse (smoking, cocaine, amphetamines) and is used in tablets
479
- as asmoking cessation remedy.
480
- It has been classified as a compound having many nicotine-like effects
481
- working as both an agonist and an antagonist at nicotinic receptors, having
482
- many nicotine-like effects including hypertension, bradycardia and hypoten-
483
- sion, anxiolytic effects, enhancement of cognitive performance. Lobeline
484
- inhibits the function of vesicular monoamine and dopamine transporters and
485
- diminishes the behavioral effects of nicotine and amphetamines. Lobeline
486
- binds to μ-opiate receptors, blocking the effects of opiate receptor agonists.
487
- Lobeline esters was shown be useful for treating neurodegenerative diseases
488
- of the CNS, which include Alzheimer’s disease, Parkinson’s disease,
489
- Huntington’s disease, etc. [123(cid:1)129].
490
- Isolation from plants is uneconomical procedure, and many different
491
- routesof synthesis have been considered.
492
- The first synthesis of lobeline (3.1.90) started with a Claisen condensa-
493
- tion between ethyl glutarate (3.1.83) and acetophenone (3.1.84) to give tetra-
494
- ketone (3.1.85). The last on treatment with ammonia was cyclized to
495
- piperidine-2,6-diylidene derivative (3.1.86). The carbonyl groups in (3.1.86)
496
- were reduced by hydrogenation over platinum oxide giving a mixture of
497
- two diastereoisomers that were separated by crystallization to give
498
- β-norlobelanidiene (3.1.87). The double bonds in obtained compound
499
- (3.1.87) were reduced with aluminum amalgam to give (3.1.88), which was
500
- converted into its methylated derivative (3.1.89) by treatment with methyl
501
- tosylate.Theproducedcompound(3.1.89)wasconvertedinto(1/(cid:1))-lobeline
502
- by treatment withan oxidizing agent such aspermanganate, or chromium tri-
503
- oxide, and then was dissolved by D-tartaric acid giving ((cid:1))-lobeline (3.1.90)
504
- [130] (Scheme3.14).
505
- 114 Piperidine-BasedDrugDiscovery
506
- O
507
- O
508
- OO
509
- O + N Ea tN hH er2 O
510
- OO
511
- O N 10H 03 °g Cas
512
- 3.1.83 3.1.84 3.1.85
513
- O O 1.H 2/PtO 2 OH OH Al/Hg OH OH TsMe
514
- N H Pyridine N H Amalgam N H
515
- 2. Crystal- Ether
516
- 3.1.86 lization 3.1.87 3.1.88
517
- OH O
518
- OH OH 1. KMnO
519
- 4 N
520
- N 2. D-tartaric
521
- 3.1.89 acid Lobeline 3.1.90
522
- SCHEME3.14 Synthesisoflobeline.
523
- Another strategy for the synthesis of lobeline (3.1.90) was proposed the
524
- same year. For that purpose 2,6-lutidine (3.1.91) was condensed with benzal-
525
- dehyde (3.1.92) at high temperature in presence of zinc chloride to give 2,6-
526
- distyrylpyridine (3.1.93). Bromination of the last with an excess of bromine
527
- rand further dehydrobromination with potassium hydroxide gave dipheny-
528
- lethynylpyridine (3.1.95). Hydration of (3.1.95) with concentrated sulfuric
529
- acid furnished the diphenacylpyridine (3.1.96). Alkylation of the pyridine
530
- ring with methyl tosylate gave a quaternary salt (3.1.97) that was reduced to
531
- lobelanidine (3.1.98). A mild oxidation of (1/(cid:1))-lobelanidine (3.1.98) by
532
- potassium permanganate gave a mixture of the (1/(cid:1))-lobeline (3.1.90a)
533
- [131] Scheme 3.15.
534
- O
535
- Br Br
536
- N + H 2Z 3n 5C °Cl 2 N CB Cr 2 l 4 Br N Br K BO eH n/ zE et nO eH
537
- 10h
538
- 3.1.91 3.1.92 3.1.93 3.1.94
539
- H 2O O O TsMe O + O H 2/PtO 2
540
- N H 2SO 4 N Benzene N Ts– Methanol
541
- 3.1.95 3.1.96 3.1.97
542
- OH OH KMnO OH O
543
- 4
544
- N N
545
- 3.1.98 (+/–)-Lobeline 3.1.90a
546
- SCHEME3.15 Synthesisof(1/-)-lobeline.
547
- Described synthetic routes might not be implemented for large scale pre-
548
- parationsas they are of lowefficiency.
549
- An efficient process for the preparation of ((cid:1))-lobeline (3.1.90) from
550
- lobelanine(3.1.99)onindustrialscalehavebeendevelopedusingasymmetric
551
- hydrogenation with a catalyst system consisting of cyclooctadiene rhodium
552
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 115
553
- chloride dimer ([RhCl(COD)] ) and (2R,4R)-4-(dicyclohexyl-phosphino)-2-
554
- 2
555
- (diphenylphosphinomethyl)-N-methylaminocarbonyl pyrrolidine [132,133]
556
- (Scheme3.16).
557
- SCHEME3.16 Synthesisoflobeline.
558
- The chemical precursor for the biosynthesis of lobeline, 2,6-cis-lobelanine
559
- (3.1.99), was easily obtained by an elegant one-pot synthesis which involves
560
- Mannich condensation and a Robinson type biomimetic reaction of glutaric
561
- dialdehyde (3.1.100), benzoylacetic acid (3.1.101), and methylamine hydro-
562
- chloride(3.1.102)inacetoneandcitratebuffer[134](Scheme3.17).
563
- O O O O
564
- pH4, 25°C
565
- H OO H + 2 OH + CH 3NH 2 Acetone N
566
- Citrate
567
- 3.1.100 3.1.101 3.1.102 buffer Lobelanine 3.1.99
568
- SCHEME3.17 Synthesisoflobelanine.
569
- Perfect reviews on synthesis and chemistry of lobeline are published
570
- [135(cid:1)138]."
571
- ARGATROBAN,2627,"Argatroban (3.1.111) (Arganova) is a highly selective direct thrombin inhibi-
572
- tor indicated for use as an anticoagulant for the treatment and prophylaxis of
573
- thrombosis in patients with heparin-induced thrombocytopenia (HIT), a dev-
574
- astating, life-threatening, immune-mediated complication of therapy with
575
- heparin and in patients undergoing percutaneous coronary intervention who
576
- have, orare at riskfor HIT.
577
- Argatroban does not generate antibodies, is not susceptible to degradation
578
- by proteasesand is cleared hepatically.
579
- It is a reversible antithrombin agent and therefore exhibits a considerably
580
- different pharmacological profile. Its mechanisms of action include several
581
- other processes that have not been explored fully to date. These include the
582
- inhibition of nonthrombin serine proteases, a direct effect on endothelial cells
583
- andthevasculature(generationofnitricoxide),anddownregulationofvarious
584
- 116 Piperidine-BasedDrugDiscovery
585
- inflammatory and thrombotic cytokines. Argatroban is more effective than
586
- heparins and hirudins inthe antithrombotic managementof microvascular dis-
587
- orders (Heparin has historically been used as the anticoagulant of choice in
588
- themanagementofanumberofthromboticdiseases.)[139(cid:1)153].
589
- The improved synthesis of argatroban (3.1.111) started with prepara-
590
- tion of racemic (6)-trans-benzyl 4-methyl pipecolic acid ester (3.1.104),
591
- which was synthesized via α-lithiation and further benzyloxycarbonylation
592
- sequence of N-Boc-4-methylpiperidine (3.1.103) using for that purpose
593
- s-BuLi and tetramethylethylene-diamine in ether followed by addition of
594
- benzyl chloroformate, which yielded the afforded compound (3.1.104).
595
- After N-Boc deprotection (HCl, AcOEt), the desired benzyl 4-methyl pipe-
596
- colic acid ester (3.1.105) was obtained. The condensation of compound
597
- (3.1.105) with
598
- Nα -Boc-Nω
599
- -nitro-L-arginine (3.1.106), two diastereomers
600
- (3.1.107a) and (3.1.107b) were obtained and separated by flash chroma-
601
- tography on silica gel to afford the desired (3.1.107a). After removal of
602
- the Boc group in (3.1.107a) by (HCl, AcOEt), the obtained compound
603
- (3.1.108) was transformed to (3.1.110) by treatment with 3-methyl-8-
604
- quinoline sulfonyl chloride (3.1.109) in dichloromethane in the presence
605
- of trimethylamine. The hydrogenation of the last over Pd/C catalyst in eth-
606
- anol/acetic acid mixture effected the debenzylation of the ester group, the
607
- cleavage of the nitro group, and the hydrogenation of the pyridine ring
608
- affording desired argatroban (3.1.111) [154] (Scheme 3.18). The first
609
- patents on the synthesis of argatroban are based on ethyl 4-methyl pipeco-
610
- lic acid ester [155(cid:1)157].
611
- NH
612
- 2 COOH
613
- N N
614
- TM1 E. Ds A-B , u EL ti her HCl NO 2H Boc NH 3.1.106
615
- N 2. ClCHCOOCHPh N CHOOCHPh AcOEt N CHOOCHPh i-BuOCOCl
616
- Boc 2 2 Boc 2 2 H 2 2 EtN
617
- 3
618
- 3.1.103 3.1.104 3.1.105 THF
619
- NH
620
- 2
621
- O COOCH 2Ph NH2 O COOCH2Ph
622
- N N N N N N
623
- NO 2H Boc NH NO2H BocNH
624
- 3.1.107a 3.1.107b
625
- HCl
626
- AcOEt
627
- N
628
- NNH N2 O NCOOCH 2PhO CS lO 3.1.109 NNH N2 O NCOCH 2P Hh 2/Pd-C HNNH N2 O NCOOH
629
- NO 2H NH 2 Et 3N, CH 2Cl 2 NO 2H O 2SNH
630
- N
631
- EtOH, AcOH H O 2SNH H
632
- N
633
- 3.1.108 3.1.110 Argatroban 3.1.111
634
- SCHEME3.18 Synthesisofargatroban.
635
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 117"
636
- ASCOMYCIN,752,", PIMECROLIMUS (1645),
637
- TACROLIMUS (32436), SIROLIMUS (22468), EVEROLIMUS
638
- (8972), AND TEMSIROLIMUS (2859)
639
- Series of Ascomycin (3.1.112) derivatives(cid:1)Pimecrolimus (3.1.113),
640
- Tacrolimus (3.1.114) as well as Sirolimus (3.1.115) and its derivatives
641
- Everolimus (3.1.116) and Temsirolimus (3.1.117)(cid:1)can formally be considered
642
- 1,2-disubstitutedpiperidines(Fig.3.1).
643
- O O O
644
- OH Cl OH
645
- H H H
646
- O O O
647
- N N N
648
- HO
649
- O
650
- OO OH HO
651
- O
652
- OO OH HO
653
- O
654
- OO OH
655
- O O O
656
- O O O
657
- OHO OH
658
- O
659
- OH
660
- O
661
- Ascomycin 3.1.112 Pimecrolimus 3.1.113 Tacrolimus 3.1.114
662
- HO
663
- HO
664
- HO
665
- HO O HO O O O
666
- O
667
- N H O O OH N H O O OH N H O O OH
668
- O OO O O O OO O O O O O O O
669
- HO HO HO
670
- O O O
671
- H H H
672
- O O O
673
- Sirolimus 3.1.115 Everolimus 3.1.116 Temsirolimus 3.1.117
674
- FIGURE3.1 Ascomycin,pimecrolimus,tacrolimus,sirolimus,everolimus,andtemsirolimus.
675
- The 23-membered macrolactam Ascomycin (3.1.112) and 31-membered
676
- macrocyclic polyketide Sirolimus (3.1.115) are fermentation products origi-
677
- nally isolated from the cultured broth of Streptomyceshygroscopicus.
678
- Ascomycin and its derivatives are powerful calcium-dependent serine/
679
- threonine protein phosphatase (calcineurin (CaN), protein phosphatase 2B
680
- inhibitors and have been used therapeutically mainly as immunosuppressants
681
- in inflammatory skin diseases. Calcineurin inhibitors (CNIs) have been also
682
- proposed for the treatment of inflammatory and degenerative brain diseases.
683
- Ascomycin and its derivatives may be useful in preventing ischemic brain
684
- damage and neuronal death in the treatment of CNS and exhibit anticonvul-
685
- sant activity. Nonimmunosuppressantactivity of its derivatives as CNS drugs
686
- probablyshould befurther explored.
687
- Pimecrolimus (3.1.113) prepared by the substitution of 32-hydroxy group
688
- in ascomycin with a chlorine with an inversion of configuration and tacroli-
689
- mus (3.1.114), which was obtained by using the mutant Streptomyces
690
- 118 Piperidine-BasedDrugDiscovery
691
- species. These compounds have been successfully introduced in the treat-
692
- ment of atopic dermatitis. They inhibit T cell proliferation, mast cell degran-
693
- ulation, production, and the release of IL-2, IL-4, IF-γ, and TNF-α. They do
694
- not effect endothelial cells and fibroblasts, so they do not induce skin atro-
695
- phy and consequentlyare well tolerated and safe.
696
- They have been used also for treatment of other inflammatory skin dis-
697
- eases including psoriasis, lichen planus, seborrheic dermatitis, allergic
698
- contact dermatitis, vitiligo, pyoderma gangrenosum, alopecia areata, graft-
699
- versus-host disease, akne rosacea, etc. The pharmacology, use, and modifica-
700
- tions ofAscomycin and its derivativesare reviewed[158(cid:1)167].
701
- Sirolimus (3.1.115) also known as Rapamycin, and its derivatives,
702
- Everolimus (3.1.116) and Temsirolimus (3.1.117), are a class of immunosup-
703
- pressive drugs approvedfor solid organ transplantation.
704
- Sirolimus, a mammalian target of rapamycin (mTOR) inhibitors, are a
705
- kind of macrolide antibiotics, producing by Streptomyces hygroscopicus in
706
- appropriate fermenting culture had been found to have also potent antiin-
707
- flammatory, antineoplasms, antiatherosclerosis, antiaging, neuroprotection
708
- properties.
709
- Sirolimus and its derivates, everolimus and temsirolimus, have a similar
710
- structure that inhibits the proliferation of T cells by interfering with a
711
- serine-threonine kinase, called mTOR. By inhibiting the ubiquitous mTOR
712
- pathway, they present a peculiar safety profile. Apart from their immuno-
713
- suppressive effects, these agents may also inhibit endothelial intimal prolif-
714
- eration, the replication of cytomegalovirus, and the development of certain
715
- cancers. They are used not only as immunosuppressants after organ trans-
716
- plantation in combination with CNIs but also as proliferation signal inhibi-
717
- tors coated on drug-eluting stents [168(cid:1)173].
718
- REFERENCES
719
- [1] BusardoFP,KyriakouC,CipolloniL,ZaamiS,FratiP.Fromclinicalapplicationtocogni-
720
- tive enhancement: the example of methylphenidate. Curr Neuropharmacol 2016;14
721
- (1):17(cid:1)27.
722
- [2] GadothN.Methylphenidate(ritalin):whatmakesitsowidelyprescribedduringthelast60
723
- years?CurrDrugTherapy2013;8(3):171(cid:1)80.
724
- [3] DevosD,MoreauC,DelvalA,DujardinK,DefebvreL,BordetR.Methylphenidate.CNS
725
- Drugs2013;27(1):1(cid:1)14.
726
- [4] Patrick KS, Markowitz JS. Pharmacology of methylphenidat, amphetamine enantiomers
727
- andpemolineinattention-deficithyperactivitydisorder.HumanPsychopharmacol1997;12
728
- (6):527(cid:1)46.
729
- [5] HartmannM,PanizzonL.Pyridineandpiperidinederivatives,US2507631;1950.
730
- [6] HuntleyCFM,KataistoEW,LaLumiereKD,ReischHA.Aprocessforthepreparationof
731
- methylphenidatehydrochloride,WO2012080834;2012.
732
- [7] StefanickSM,SmithBJ,BarrC,DobishMC.Aprocessforthepreparationofmethylphe-
733
- nidate,WO2015069505;2015.
734
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 119
735
- [8] DeutschHM,ShiQ,Gruszecka-KowalikE,SchweriMM.Synthesisandpharmacologyof
736
- potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-
737
- substitutedmethylphenidateanalogs.JMedChem1996;39(6):1201(cid:1)9.
738
- [9] PrashadM,KimH-Y,LuY,LiuY,HarD,RepicO,etal.Thefirstenantioselectivesynthe-
739
- sisof(2R,20R)-threo-(1)-methylphenidatehydrochloride.JOrgChem1999;64(5):1750(cid:1)3.
740
- [10] RometschR.Stereoisomersofα-phenyl-α-(2-piperidyl)aceticacid,US2838519;1958.
741
- [11] RometschR.Conversionofstereoisomers,US2957880;1960.
742
- [12] Khetani V, Luo Y, Ramaswamy S. Resolution of piperidylacetamide stereoisomers, WO
743
- 9852921;1998.
744
- [13] Prashad M, Har D, Repic O, Blacklock TJ, Giannousis P. Enzymic resolution of
745
- (6)-threo-methylphenidate.Tetrahedron:Asymmetry1998;9(12):2133(cid:1)6.
746
- [14] RenalsonKS,KalambeAB,PanhekarDY.Efficientmethodforenantioselectivesynthesis
747
- ofdexmethylphenidatehydrochloride(Focalin).IntJResDevelopPharmLifeSci2014;3
748
- (4):1066(cid:1)9.
749
- [15] Weisz I, Dudas A. Stereoisomeric 2-piperidylphenylacetic acid esters. The spatial struc-
750
- tureofa7-phenylazabicyclo[4.2.0]octane.MonatshChem1960;91:840(cid:1)9.
751
- [16] Shafi’eeA,HiteG.Absoluteconfigurationsofthepheniramines,methylphenidates,and
752
- pipradrols.JMedChem1969;12(2):266(cid:1)70.
753
- [17] Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovasc Drug Rev 2007;25
754
- (1):76(cid:1)97.
755
- [18] HorowitzJD,ChirkovYY.Perhexilineandhypertrophiccardiomyopathy:anewhorizon
756
- formetabolicmodulation.Circulation2010;122(16):1547(cid:1)9.
757
- [19] Killalea SM, Krum H. Systematic review of the efficacy and safety perhexiline in the
758
- treatmentofischemicheartdisease.AmJCardiovascDrugs2001;1(3):193(cid:1)204.
759
- [20] HudakWJ,LewisRE,LucasRW,KuhnWL.Reviewofthecardiovascularpharmacology
760
- ofperhexiline.PostgraduateMedicalJSuppl1973;49(3):16(cid:1)25.
761
- [21] WinsorT.Clinicalevaluationofperhexilinemaleate.ClinPharmacolTherapeut1970;11
762
- (1):85(cid:1)9.
763
- [22] HudakWJ,LewisRE,KuhnWL.Cardiovascularpharmacologyofperhexiline.JPharmacol
764
- ExpTherapeut1970;173(2):371(cid:1)82.
765
- [23] PalopoliFP,KuhnWL.1,1-Dicyclohexyl-2-(2-piperidyl)ethylene,US3038905;1962.
766
- [24] NoInventordataavailable,1,1-Dicyclohexyl-2-(2-piperidyl)ethane,GB1025578;1966.
767
- [25] BianchettiG,ViscardiR.1,1-Dicyclohexyl-2-(20-piperidyl)ethane,DE2643473;1977.
768
- [26] Horgan SW, Palopoli FP, Schwoegler EJ. 2-(2,2-Dicyclohexylethyl)piperidines, DE
769
- 2713500;1977.
770
- [27] HorganSW,PalopoliFP,WenstrupDL.DE2714081;1977.
771
- [28] Davies BJ, Herbert MK, Culbert JA, Pyke SM, Coller JK, Somogyi AA, et al. J
772
- ChromatogrBAnalytTechnolBiomedLifeSci2006;832(1):114(cid:1)20.
773
- [29] TsengC,GreigIR,HarrisonWTA,ZandaM.Asymmetricsynthesisandabsoluteconfigu-
774
- rationof(1)-and(2)-perhexiline.Synthesis2016;48(1):73(cid:1)8.
775
- [30] White MW,Archer JRH. Pipradroland pipradrolderivatives. In: Dargan PI,Wood DM,
776
- editors.Novelpsychoactivesubstances.Amsterdam:ElsevierInc.;2013.p.233(cid:1)59.
777
- [31] Tilford CH, Shelton RS, Van Campen Jr. MG. Histamine antagonists. Basically substi-
778
- tutedpyridinederivatives.JAmChemSoc1948;70:4001(cid:1)9.
779
- [32] WernerHW,TilfordCH.α,α-Diarylpiperidinemethanols,US2624739;1953.
780
- [33] Portoghese PS, PazdernikTL, Kuhn WL, Hite G, Shafi’ee A. Stereochemicalstudies on
781
- medicinal agents. V. Synthesis, configuration, and pharmacological activity of pipradrol
782
- enantiomers.JMedChem1968;11(1):12(cid:1)15.
783
- 120 Piperidine-BasedDrugDiscovery
784
- [34] Singh SK, Singh S. A brief history of quinoline as antimalarial agents. Int J Pharm Sci
785
- RevRes2014;25(1):295(cid:1)302.
786
- [35] WongsrichanalaiC,PrajakwongS,MeshnickSR,ShanksGD,ThimasarnK.Mefloquine-
787
- its 20 years in the Thai Malaria Control Program. Southeast Asian J Tropical Med Publ
788
- Health2004;35(2):300(cid:1)8.
789
- [36] WinstanleyP.Mefloquine:thebenefitsoutweightherisks.BritJClinPharmacol1996;42
790
- (4):411(cid:1)13.
791
- [37] PalmerKJ,HollidaySM,BrogdenRN.Mefloquine:areviewofitsantimalarialactivity,
792
- pharmacokineticpropertiesandtherapeuticefficacy.Drugs1993;45(3):430(cid:1)75.
793
- [38] Lutz RE,Ohnmacht CJ, Patel AR. Antimalarials. 7. Bis(trifluoromethyl)-α-(2-piperidyl)-
794
- 4-quinolinemethanols.JMedChem1971;14(10):926(cid:1)8.
795
- [39] Bomches H, Hardegger B. High purity preparation of mefloquine hydrochloride, EP
796
- 92185;1983.
797
- [40] Carroll FI, Blackwell JT. Optical isomers of aryl-2-piperidylmethanol antimalarial agents.
798
- Preparation,opticalpurity,andabsolutestereochemistry.JMedChem1974;17(2):210(cid:1)19.
799
- [41] TagarielloV,CaporuscioA,DeTommasoO.Mepivacaine:updateonanevergreenlocal
800
- anaesthetic.MinervaAnestesiol2001;67(9Suppl.1):5(cid:1)8.
801
- [42] HelmyR,YoussefMH,RasheedMH,El-ShirbiniA,MandourA.Pharmacologicalprop-
802
- erties of a new local anesthetic drug (mepivacaine hydrochloride). J Egypt Med Assoc
803
- 1967;50(11(cid:1)12):688(cid:1)701.
804
- [43] EkenstamBT,EgnerBPH.AmidesofN-alkylpiperidinemonocarboxylicacidandN-alkyl-
805
- pyrrolidine-α-monocarboxylicacids,US2799679;1957.
806
- [44] RinderknechtH.Newlocalanesthetics.HelvChimActa1959;42:1324(cid:1)7.
807
- [45] Ekenstam BT, Egner B, Pettersson G. Local anesthetics. I. N-Alkylpyrrolidine and
808
- N-alkylpiperidinecarboxylicacidamides.ActaChemScand1957;11:1183(cid:1)90.
809
- [46] Pettersson BG. N-Methylpiperidine-2-carboxylic acid 2,6-xylidide hydrochloride, DE
810
- 2726200;1978.
811
- [47] TullarBF.Opticalisomersofmepivacaineandbupivacaine.JMedChem1971;14(9):891(cid:1)2.
812
- [48] McClureJH.Ropivacaine.BritJAnaesth1996;76(2):300(cid:1)7.
813
- [49] McClellanKJ,FauldsD.Ropivacaine:anupdateofitsuseinregionalanesthesia.Drugs
814
- 2000;60(5):1065(cid:1)93.
815
- [50] Simpson D, Curran MP, Oldfield V, Keating GM. Ropivacaine: a review of its use in
816
- regionalanaesthesiaandacutepainmanagement.Drugs2005;65(18):2675(cid:1)717.
817
- [51] Hansen TG. Ropivacaine: a pharmacological review. Exp Rev Neurotherapeut 2004;4
818
- (5):781(cid:1)91.
819
- [52] WangRD,DanglerLA,GreengrassRA.Updateonropivacaine.ExpOpinPharmacother
820
- 2001;2(12):2051(cid:1)63.
821
- [53] BansalT,HoodaS.Ropivacaine-anovelandpromisinglocalanaestheticdrug.AsianJ
822
- PharmaceutClinRes2012;5(Suppl.1):13(cid:1)15.
823
- [54] Kuthiala G, Chaudhary G. Ropivacaine: a review of its pharmacology and clinical use.
824
- IndJAnaesth2011;55(2):104(cid:1)10.
825
- [55] OwenMD,DeanLS.Ropivacaine.ExpOpinPharmacother2000;1(2):325(cid:1)36.
826
- [56] MarkhamA,FauldsD.Ropivacaine:areviewofitspharmacologyandtherapeuticusein
827
- regionalanesthesia.Drugs1996;52(3):429(cid:1)49.
828
- [57] CasatiA,PutzuM.BestPractResClinAnaesthesiol2005;19(2):247(cid:1)68.
829
- [58] DeJongRH.Ropivacaine:whiteknightordarkhorse?RegAnesth1995;20(6):474(cid:1)81.
830
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 121
831
- [59] EkenstamBT,BovinC.L-N-n-Propylpipecolicacid2,6-xylidide,WO8500599;1985.
832
- [60] FederselHJ,JakschP,SandbergR.Anefficientsynthesisofanew,chiral20,60-pipecolox-
833
- ylididelocalanestheticagent.ActaChemScand1987;B41(10):757(cid:1)61.
834
- [61] TuominenM.Bupivacainespinalanaesthesia.ActaanaesthesiolScand1991;35(1):1(cid:1)10.
835
- [62] Chapman PJ. Review: bupivacaine -a long-acting local anaesthetic. Australian Dental J
836
- 1987;32(4):288(cid:1)91.
837
- [63] BabstCR,GillingBN.Bupivacaine:areview.AnesthesiaProgress1978;25(3):87(cid:1)91.
838
- [64] Gazzotti F, Bertellini E, Tassi A. Best indications for local anaesthetics: bupivacaine.
839
- Minervaanestesiologica2001;67(9Suppl.1):9(cid:1)14.
840
- [65] TullarBF,BolenCH.1-Butyl-20,60-pipecoloxylidide,GB1166802;1969.
841
- [66] No Inventor data available. Amides of N-alkylpiperidinemonocarboxylic acid and N-
842
- alkylpyrrolidine-α-monocarboxylicacids,GB775749;1957.
843
- [67] No Inventor data available. Amides of N-alkylpiperidinemonocarboxylic acid and
844
- N-alkylpyrrolidine-α-monocarboxylicacids,GB775750;1957.
845
- [68] BoforsA.N-Alkyl-andcycloalkylpiperidinecarboxylicacidamides,GB869978;1958.
846
- [69] Ekesntam BT, Pettersson BG. Synthesis of N-alkylpiperidine and N-alkylpyrrolidine-
847
- α-carboxylicacidamides,US2955111;1960.
848
- [70] Luduena FP, Tullar BF. Optical isomers of an aminoacyl xylidide, ZA 6802611; 1968.
849
- FromS.African(1968),ZA680261119681212.
850
- [71] Ivani G, Borghi B, van Oven H. Levobupivacaine. Minerva Anestesiologica
851
- 2001;67(9 Suppl. 1):20(cid:1)3.
852
- [72] McLeodGA,BurkeD.Levobupivacaine.Anaesthesia2001;56(4):331(cid:1)41.
853
- [73] AdgerB,DyerU,HuttonG,WoodsM.Stereospecificsynthesisoftheanestheticlevobu-
854
- pivacaine.TetrahedronLett1996;37(35):6399(cid:1)402.
855
- [74] Hudak JM, Banitt EH, Schmid JR. Discovery and development of flecainide. Am J
856
- Cardiol1984;53(5):17(cid:1)20.
857
- [75] Aliot E, Capucci A, Crijns HJ, Goette A, Tamargo J. Twenty-five years in the making:
858
- flecainideissafeandeffectiveforthemanagementofatrialfibrillation.Europace2011;13
859
- (2):161(cid:1)73.
860
- [76] RodenDM,WoosleyRL.Flecainide:anewagentforthetreatmentofventriculararrhyth-
861
- mias.NEnglJMed1986;315(1):36(cid:1)41.
862
- [77] TamargoJ,LeHeuzeyJ,MaboP.Narrowtherapeuticindexdrugs:aclinicalpharmaco-
863
- logicalconsiderationtoflecainide.EurJClinPharmacol2015;71(5):549(cid:1)67.
864
- [78] ApostolakisS,OeffM,TebbeU,FabritzL,BreithardtG,KirchhofP.Flecainideacetate
865
- for the treatment of atrial and ventricular arrhythmias. Exp Opin Pharmacother 2013;14
866
- (3):347(cid:1)57.
867
- [79] HolmesB,HeelRC.Flecainide:apreliminaryreviewofitspharmacodynamicproperties
868
- andtherapeuticefficacy.Drugs1985;29(1):1(cid:1)33.
869
- [80] Banitt EH, Coyne WE, Schmid JR, Mendel A. Antiarrhythmics. N-(Aminoalkylene)tri-
870
- fluoroethoxybenzamides and N-(aminoalkylene)trifluoroethoxynaphthamides. J Med
871
- Chem1975;18(11):1130(cid:1)4.
872
- [81] BanittEH,BronnWR,CoyneWE,SchmidJR.Antiarrhythmics.2.Synthesisandantiar-
873
- rhythmic activity of N-(piperidylalkyl)trifluoroethoxybenzamides. J Med Chem 1977;20
874
- (6):821(cid:1)6.
875
- [82] BanittEH,BronnWR.Derivativesofpyrrolidineandpiperidine,US3900481;1975.
876
- [83] BanittEH,BronnWR.Derivativesofpyrrolidineandpiperidine,US4013670;1977.
877
- [84] BanittEH,BronnWR.Antiarrhythmicmethodutilizingfluoroalkoxy-N-piperidylandpyr-
878
- idylbenzamides,US4005209;1977.
879
- 122 Piperidine-BasedDrugDiscovery
880
- [85] WoosleyRL,WoodAJJ,RodenDM.Encainide.NEnglJMed1988;318(17):1107(cid:1)15.
881
- [86] Mitchell LB, Winkle RA. Encainide. New Drugs Annual: Cardiovasc Drugs
882
- 1983;1:93(cid:1)107.
883
- [87] Antonaccio MJ, Gomoll AW, Byrne JE. Encainide. Cardiovasc Drugs Ther 1989;3
884
- (5):691(cid:1)710.
885
- [88] BrogdenRN,ToddPA.Encainide.Areviewofitspharmacologicalpropertiesandthera-
886
- peuticefficacy.Drugs1987;34(5):519(cid:1)38.
887
- [89] Somberg JC, Zanger D, Levine E, Tepper D. Encainide: a new and potent antiarrhyth-
888
- mic.AmHeartJ1987;114(4Pt1):826(cid:1)35.
889
- [90] Dykstra SJ, Minielli JL. Pharmacologically active substituted piperidin, DE 2210154;
890
- 1972.
891
- [91] DykstraSJ,MinielliJL.Substitutedpiperidines,US4000143;1976.
892
- [92] DykstraSJ,MinielliJL,LawsonJE,FergusonHC,DunganKW.Lysergicacidandquin-
893
- idineanalogs.2-(o-Acylaminophenethyl)piperidines.JMedChem1973;16(9):1015(cid:1)20.
894
- [93] Johnson PC, Covington RR. Synthesis of encainide-13C hydrochloride from 2-
895
- nitrobenzaldehyde-formyl-13C.JLabelledCompRadiopharm1982;19(8):953(cid:1)8.
896
- [94] No Inventor data available, Preparation of the antiarrhythmic encainide, BE 1000112;
897
- 1988.
898
- [95] Dillon JL, Spector RH. Process for the preparation of encainide hydrochloride, US
899
- 4675409;1987.
900
- [96] NoInventordataavailable,Encainide,NL8204775;1983.
901
- [97] Gold N. Experience with thioridazine (“Melleril”) therapy. J Mental Sci
902
- 1961;107:523(cid:1)8.
903
- [98] JonesAL,LewisDJ,MillerA.Useofthioridazine(mellaril)inavarietyofclinicalset-
904
- tings.CMAJ1960;83:948(cid:1)9.
905
- [99] Barsa JA, Saunders JC. Thioridazine (mellaril) in the treatment of chronic schizophre-
906
- nics.AmJPsychiatry1960;116:1028(cid:1)9.
907
- [100] Kirchner V, Kelly CA, Harvey RJ. Thioridazine for dementia. Cochrane Database Syst
908
- Rev2001;(3):CD000464.
909
- [101] Sultana A, Reilly J, Fenton M. Thioridazine or schizophrenia. Cochrane Database Syst
910
- Rev2000;(3):CD001944.
911
- [102] Fenton M, Rathbone J, Reilly J, Sultana A. Thioridazine for schizophrenia. Cochrane
912
- DatabaseSystRev2007;(3):CD001944.
913
- [103] Abdel-MoetyEM,Al-Rashood,KhalidA.Analyticalprofileofthioridazineandthiorida-
914
- zinehydrochloride.AnalProfilesDrugSubst1989;18:459(cid:1)525.
915
- [104] DuttaNK,KarakousisPC.Thioridazinefortreatmentoftuberculosis:promisesandpit-
916
- falls.Tuberculosis2014;94(6):708(cid:1)11.
917
- [105] AmaralL,MolnarJ.WhyandhowtheoldneurolepticthioridazinecurestheXDR-TB.
918
- Pharmaceuticals2012;5:1021(cid:1)31.
919
- [106] Thanacoody RHK. Thioridazine: the good and the bad. Rec Pat Anti-Infect Drug Disc
920
- 2011;6(2):92(cid:1)8.
921
- [107] Thanacoody HKR. Thioridazine: resurrection as an antimicrobial agent? Brit J Clin
922
- Pharmacol2007;64(5):566(cid:1)74.
923
- [108] Bourquin JP, Schwarb G, Gamboni G, Fischer R, Ruesch L, Guldimann S, et al.
924
- Syntheses in the phenothiazine family. II. N-Substituted phenothiazinethiol derivatives.
925
- HelvChimActa1958;41:1072(cid:1)108.
926
- [109] NoInventordataavailable.2-Mercaptophenothiazinederivatives,GB863550;1961.
927
- [110] NoInventordataavailable.2-Mercaptophenothiazinederivatives,GB863551;1961.
928
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 123
929
- [111] PinderRM,BrogdenRN,SpeightTM,AveryGS.Rimiterol:areviewofitspharmaco-
930
- logicalpropertiesandtherapeuticefficacyinasthma.Drugs1977;14(2):81(cid:1)104.
931
- [112] Muittari A. A brief review of sympathomimetic bronchodilators and a description of a
932
- newselectiveagent,rimiterolhydrobromide.Respiration1978;35(3):173(cid:1)80.
933
- [113] Carney I, Daly MJ, Lightowler JE, Pickering RW. Comparative pharmacology of WG
934
- 253 (rimiterol hydrobromide), a new bronchodilator. Arch Int Pharmacodyn, Therapie
935
- 1971;194(2):334(cid:1)45.
936
- [114] Griffin JP, Turner P. New bronchodilator (WG 253) in man. J Clin Pharmacol New
937
- Drugs1971;11(4):280(cid:1)7.
938
- [115] Bowman WC, Rodger IW. Actions of the sympathomimetic bronchodilator, rimiterol
939
- (R798), on the cardiovascular, respiratory, and skeletal muscle systems of the anesthe-
940
- tizedcat.BritJPharmacol1972;45(4):574(cid:1)83.
941
- [116] Palma-Carlos AG, Palma-Carlos GS. Beta-2-agonists of third generation. Allergie et
942
- Immunologie1986;18(4):31(cid:1)32,35.
943
- [117] LaiCK,TwentymanOP,HolgateST.Theeffectofanincreaseininhaledallergendose
944
- after rimiterol hydrobromide on the occurrence and magnitude of the late asthmatic
945
- response and the associated change in nonspecific bronchial responsiveness. Am Rev
946
- RespDis1989;140(4):917(cid:1)23.
947
- [118] Ydreborg SO, Svedmyr N, Thiringer G. Comparison of rimiterol and terbutaline, given
948
- byaerosol,inalong-termstudy.ScandJRespDiseases1977;58(2):117(cid:1)24.
949
- [119] Sankey GH, Whiting KDE. Cyclic adrenaline derivatives. Aryl-2-piperidylcarbinols. J
950
- HetChem1972;9(5):1049(cid:1)55.
951
- [120] SankeyGH,WhitingKDE.α-(Hydroxy-andalkoxy-substituted)phenyl-α-(2-piperidinyl)
952
- methanols,usefulasbronchodilators,DE2024049;1970.
953
- [121] SankeyGH,WhitingKDE.α-(Hydroxyandalkoxysubstituted)phenyl-α-(2-piperidinyl)-
954
- methanols,US3910934;1975.
955
- [122] KaiserC,RossST.Bronchodilatinghydroxyphenyl-2-piperidinylcarbinols,DE2047937;
956
- 1971.
957
- [123] AldaheffM.Lobelinesulfate.DrugsofToday1977;13(6):236(cid:1)9.
958
- [124] Damaj MI, Patrick GS, Creasy KR, Martin BR. Pharmacology of lobeline, a nicotinic
959
- receptorligand.JPharmacolExpTher1997;282(1):410(cid:1)19.
960
- [125] DwoskinLP,CrooksPA.Anovelmechanismofactionandpotentialuseforlobelineas
961
- atreatmentforpsychostimulantabuse.BiochemPharmacol2002;63(2):89(cid:1)98.
962
- [126] MillerDK,LeverJR,RodveltKR,BaskettJA,WillMJ,KrackeGR.Lobeline,apoten-
963
- tialpharmacotherapyfordrugaddiction,bindstoμopioidreceptorsanddiminishesthe
964
- effectsofopioidreceptoragonists.DrugAlcoholDepend2007;89(2(cid:1)3):282(cid:1)91.
965
- [127] Willyard C. Pharmacotherapy: quest for the quitting pill. Nature 2015;522(7557):
966
- S53(cid:1)5.
967
- [128] McCurdy CR, Miller RL, Beach JW. Lobeline:a naturalproduct with high affinity for
968
- neuronal nicotinic receptors and a vast potential for use in neurological disorders.
969
- In:CutlerSJ,CutlerHG,editors.Biologicallyactivenaturalproducts.BocaRaton,FL:
970
- CRCPress;2000.p.151(cid:1)62.
971
- [129] Stead LF, Hughes JR. Lobeline for smokingcessation. Cochrane Database SystemRev
972
- 2012;(2):CD000124.
973
- [130] Wieland H, Drishaus I. Lobelia alkaloids. IV. Synthesis of lobelia alkaloids. Just Lieb
974
- Ann1929;473:102(cid:1)18.
975
- [131] Scheuing G, Winterhalder L. Synthesis of lobelia alkaloids. Just Lieb Ann
976
- 1929;473:126(cid:1)36.
977
- 124 Piperidine-BasedDrugDiscovery
978
- [132] KlinglerF,SobottaR.Processformanufacturingofchirallobeline,US200600114791;
979
- 2006.
980
- [133] Klingler FD. Asymmetric hydrogenation of prochiral amino ketones to amino alcohols
981
- forpharmaceuticaluse.AccChemRes2007;40(12):1367(cid:1)76.
982
- [134] SchopfC,LehmannG.Synthesesandtransformationsofnaturalproductsunderphysio-
983
- logical conditions (modelexperiments onthe questionofthebiogenesisofnaturalpro-
984
- ducts). IV. Syntheses of tropinone, pseudopelletierine, lobelanine and related alkaloids
985
- underphysiologicalconditions.JustLiebAnn1935;518:1(cid:1)37.
986
- [135] Felpin F, Lebreton J. History, chemistry and biology of alkaloids from Lobelia inflate.
987
- Tetrahedron2004;60(45):10127(cid:1)53.
988
- [136] FelpinF,LebretonJ.Ahighlystereoselectiveasymmetricsynthesisof(-)-Lobelineand
989
- (-)-Sedamine.JOrgChem2002;67(26):9192(cid:1)9.
990
- [137] KlinglerFD.Developmentofefficienttechnicalprocessesfortheproductionofenantio-
991
- pureaminoalcoholsinthepharmaceuticalindustry,SynthesisofLobeline,Lobelaneand
992
- their Analogues. In: Blaser H, Federsel H, editors. A review, asymmetric catalysis on
993
- industrialscale.2ndEditionWeinheim:Wiley;2010.p.171(cid:1)85.
994
- [138] ZhengG,CrooksPA.Synthesisoflobeline,lobelaneandtheiranalogues.RevOrgPrep
995
- ProceduresInt2015;47(5):317(cid:1)37.
996
- [139] JeskeWP,FareedJ,HoppensteadtDA,LewisB,WalengaJM.Pharmacologyofargatro-
997
- ban.ExpRevHematol2010;3(5):527(cid:1)39.
998
- [140] McKeageK,PloskerGL.Argatroban.FromDrugs2001;61(4):515(cid:1)22.
999
- [141] Kondo LM, Wittkowsky AK, Wiggins BS. Argatroban for prevention and treatment of
1000
- thromboembolism in heparin-induced thrombocytopenia. Ann Pharmacother 2001;35
1001
- (4):440(cid:1)51.
1002
- [142] Jeske W, Walenga JM, Lewis BE, Fareed J. Pharmacology of argatroban. Exp Opin
1003
- InvestDrugs1999;8(5):625(cid:1)54.
1004
- [143] DhillonS.Argatroban.Areviewofitsuseinthemanagementofheparin-inducedthrom-
1005
- bocytopenia.AmJCardiovascDrugs2009;9(4):261(cid:1)82.
1006
- [144] BoggioLN,OzaVLM.Argatrobanuseinheparin-inducedthrombocytopenia.ExpOpin
1007
- Pharmacother2008;9(11):1963(cid:1)7.
1008
- [145] RiceL,HurstingMJ.Argatrobantherapyinheparin-inducedthrombocytopenia.ExpRev
1009
- ClinPharmacol2008;1(3):357(cid:1)67.
1010
- [146] Escolar G, Bozzo J, Maragall S. Argatroban: a direct thrombin inhibitor with reliable
1011
- andpredictableanticoagulantactions.DrugsofToday2006;42(4):223(cid:1)36.
1012
- [147] YehRW,JangI.Argatroban:update.AmHeartJ2006;151(6):1131(cid:1)8.
1013
- [148] LewisBE,HurstingMJ.Argatrobantherapyinheparin-inducedthrombocytopenia.Fund
1014
- ClinCardiol2004;47:437(cid:1)74.
1015
- [149] FareedJ,JeskeWP.Small-moleculedirectantithrombins:argatroban.BestPracticeRes,
1016
- ClinicalHaematol2004;17(1):127(cid:1)38.
1017
- [150] WarkentinTE.Managementofheparin-inducedthrombocytopenia:acriticalcomparison
1018
- oflepirudinandargatroban.ThrombRes2003;110(2(cid:1)3):73(cid:1)82.
1019
- [151] Bambrah RK, Pham DC, Rana F. Argatroban in heparin-induced thrombocytopenia:
1020
- rationaleforuseandplaceintherapy.TherapeutAdvChronicDisease2013;4(6):302(cid:1)4.
1021
- [152] KathiresanS,ShiomuraJ,JangI,ArgatrobanJ.Thrombos.Thrombolys2000;13(1):41(cid:1)7.
1022
- [153] Saugel B, Schmid RM, Huber W. Safety and efficacy of argatroban in the manage-
1023
- ment of heparin-induced thrombocytopenia. Clin Med Insights: Blood Disorders
1024
- 2011;4:11(cid:1)19.
1025
- 2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 125
1026
- [154] CossyJ,BelottiDA.Shortsynthesisofargatrobanapotentselectivethrombininhibitor.
1027
- BioorgMedChem,Lett2001;11(15):1989(cid:1)92.
1028
- [155] Okamoto S, Hijikata A, Kikumoto R, Tamao Y, Ohkubo K, Tezuka T, et al. N2-
1029
- Arylsulfonyl-1-argininamides and pharmaceutically acceptable salts, US 4258192;
1030
- 1981.
1031
- [156] Kikumoto R, Tamao Y, Ohkubo K, Tezuka T, Tonomura S, Hijikata A, et al. α-(N-
1032
- Arylsulfonyl-L-argininamides and pharmaceutical compositions containing these sub-
1033
- stances,EP8746;1980.
1034
- [157] CossyJ.Selectivemethodologiesforthesynthesisofbiologicallyactivepiperidiniccom-
1035
- pounds.ChemRecord2005;5(2):70(cid:1)80.
1036
- [158] Ermertcan AT, Ozturkcan S. Topical calcineurin inhibitors, pimecrolimus and tacroli-
1037
- mus.AntiinflammAntiallergyAgentsMedChem2007;6(3):237(cid:1)43.
1038
- [159] Bulusu MARC, Baumann K, Stuetz A. Chemistry of the immunomodulatory macrolide
1039
- ascomycinandrelatedanalogues.ProgChemOrgNatProd2011;94:59(cid:1)126.
1040
- [160] MollisonKW,FeyTA,GauvinDM,SheetsMP,SmithML,PongM,etal.Discoveryof
1041
- ascomycin analogs with potent topical but weak systemic activity for treatment of
1042
- inflammatoryskindiseases.CurrPharmDes1998;4(5):367(cid:1)79.
1043
- [161] PaulC,GraeberM,StuetzA.Ascomycins:promisingagentsforthetreatmentofinflam-
1044
- matoryskindiseases.ExpOpinInvestDrugs2000;9(1):69(cid:1)77.
1045
- [162] Griffiths CEM. Ascomycin: an advance in the management of atopic dermatitis. Br J
1046
- Dermatol2001;144(4):679(cid:1)81.
1047
- [163] Hersperger R, Keller TH. Ascomycin derivatives and their use as immunosuppressive
1048
- agents.DrugsFut2000;25(3):269(cid:1)77.
1049
- [164] SimpsonD,NobleS. Tacrolimusointment:a reviewofitsusein atopicdermatitisand
1050
- itsclinicalpotentialinotherinflammatoryskinconditions.Drugs2005;65(6):827(cid:1)58.
1051
- [165] ZimmerR,BaumannK,SpernerH,SchulzG,HaidlE,GrassbergerMA.Syntheticmod-
1052
- ifications of ascomycin. Part V. Access to novel ascomycin derivatives by replacement
1053
- ofthecyclohexylvinylidenesubunit.CroatChemActa2005;78(1):17(cid:1)27.
1054
- [166] ZimmerR,GrassbergerMA,BaumannK,HorvathA,SchulzG,HaidlE.Syntheticmod-
1055
- ificationsofascomycin.II.Asimpleandefficientwaytomodifiediso-ascomycinderiva-
1056
- tives.TetrahedronLett1995;36(42):7635(cid:1)8.
1057
- [167] Ferraboschi P, Colombo D, De Mieri M, Grisenti P. First chemoenzymatic synthesis
1058
- of immunomodulating macrolactam pimecrolimus. Tetrahedron Lett 2009;50
1059
- (30):4384(cid:1)8.
1060
- [168] VezinaC,KudelskiA,SehgalSN.Rapamycin(AY-22,989),anewantifungalantibiotic.
1061
- I. Taxonomy of the producing streptomycete and isolation of the active principle. J
1062
- Antibiot1975;28(10):721(cid:1)6.
1063
- [169] KlawitterJ,NashanB,ChristiansU.Everolimusandsirolimusintransplantation-related
1064
- butdifferent.ExpOpinDrugSafety2015;14(7):1055(cid:1)70.
1065
- [170] MoesDJAR,GuchelaarH,deFijterJW.Everolimusandsirolimusinkidneytransplanta-
1066
- tion.DrugDiscovToday2015;20(10):1243(cid:1)9.
1067
- [171] AugustineJJ, Hricik DE. Experience witheverolimus,Transplant. Proc.,2004, 36 2S0,
1068
- 500S-503S.
1069
- [172] WebsterAC, LeeVW,ChapmanJR,CraigJC.Targetofrapamycininhibitors(TOR-I;
1070
- sirolimus and everolimus) for primary immunosuppression in kidney transplant recipi-
1071
- ents.CochraneDatabaseSystRev2006;(2):CD004290.
1072
- [173] Schulze M, Stock C, Zaccagnini M, Teber D, Rassweiler JJ. Temsirolimus. Recent
1073
- ResultsCancerRes2014;201:393(cid:1)403."