Delete chemical_data.csv
Browse files- chemical_data.csv +0 -1073
chemical_data.csv
DELETED
@@ -1,1073 +0,0 @@
|
|
1 |
-
name,id,synthesis
|
2 |
-
METHYLPHENIDATE,11968,"Methylphenidate (3.1.6) (Ritalin) is a commonly prescribed central nervous
|
3 |
-
system(CNS)stimulant.Methylphenidateisusedtotreatattentiondeficitdisor-
|
4 |
-
der,attentiondeficithyperactivitydisorder,andnarcolepsy,achronicsleepdis-
|
5 |
-
order. However, a growing number of young individuals misuse or abuse
|
6 |
-
methylphenidatetosustainattention,enhanceintellectualcapacity,andincrease
|
7 |
-
memory [1(cid:1)4]. Side effects of methylphenidate include trouble sleeping, loss
|
8 |
-
ofappetite,weightloss,dizziness,nausea,vomiting,andheadache.
|
9 |
-
Methylphenidate (3.1.6) has been synthesized via condensation of pheny-
|
10 |
-
lacetonitrile (3.1.1) with a 2-chloropyridin (3.1.2) at 110(cid:1)112(cid:3)C in toluene
|
11 |
-
in the presence of NaNH , which gave 2-phenyl-2-(pyridin-2-yl)acetonitrile
|
12 |
-
2
|
13 |
-
(3.1.3). The last was hydrolyzed to corresponding amide (3.1.4), which on
|
14 |
-
treatment with HCl in methanol on heating gave methyl 2-phenyl-2-(pyridin-
|
15 |
-
2-yl)acetate (3.1.5). Hydrogenation of the pyridine ring to a piperidine ring
|
16 |
-
in the obtained product in acetic acid on the Pt or PtO catalyst gave the
|
17 |
-
2
|
18 |
-
desired methylphenidate (3.1.6)[5(cid:1)7](Scheme 3.1).
|
19 |
-
N + NaNH 2 N N H 2SO 4 ONH 2 N CH 3OH OO N H 2-Pt OO N
|
20 |
-
Cl N Toluene HCl H
|
21 |
-
110–12°C
|
22 |
-
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 Methylphenidate 3.1.6
|
23 |
-
SCHEME3.1 Synthesisofmethylphenidate.
|
24 |
-
Alternatively, 2-bromopyridine can be used instead of 2-chloropyridine
|
25 |
-
[8]. A huge amount of chemical work is described on the separation and
|
26 |
-
interconversion stereoisomers of methylphenidate [9(cid:1)14]. The absolute
|
27 |
-
(2R,20R; threo) stereochemistry of the most active enantiomer, (2R,20R)-
|
28 |
-
threo-methylphenidate,was proven [15,16]."
|
29 |
-
PERHEXILINE,1216,"Perhexiline (3.1.11) was originally developed as an antianginal drug and was
|
30 |
-
launched on the UK market as a racemate in 1975 under the trade name
|
31 |
-
Piperidine-BasedDrugDiscovery.DOI:http://dx.doi.org/10.1016/B978-0-12-805157-3.00003-X
|
32 |
-
Copyright©2017ElsevierLtd.Allrightsreserved. 103
|
33 |
-
104 Piperidine-BasedDrugDiscovery
|
34 |
-
Pexid. It rapidly gained a reputation for efficacy in the management of
|
35 |
-
angina pectoris. However, hepatic and neurological adverse effects in a small
|
36 |
-
proportionofpatientsled toamarkeddeclineinitsusein1985.The drugwas
|
37 |
-
originally classified as a coronary vasodilator, and later as a calcium channel
|
38 |
-
antagonist. Recent data suggests that it acts as a cardiac metabolic agent
|
39 |
-
throughinhibitionoftheenzyme,carnitinepalmitoyltransferase-1[17(cid:1)22].
|
40 |
-
Perhexiline (3.1.11) consists of a piperidine framework with a 2,2-dicy-
|
41 |
-
clohexylethyl substituent at the 2-position. The synthesis of racemic perhexi-
|
42 |
-
line is based on nucleophilic addition of lithiated 2-picoline (3.1.7) to
|
43 |
-
dicyclohexyl ketone (3.1.8) to give the corresponding tertiary alcohol (3.1.9),
|
44 |
-
which undergoes HCL mediated dehydration forming alkene (3.1.10), the
|
45 |
-
subsequent hydrogenation of which catalyzed by PtO gives desired perhexi-
|
46 |
-
2
|
47 |
-
line (3.1.11) [23,24]. An alternative approach was demonstrated, using as
|
48 |
-
starting ketone, bezophenone (3.1.12), which on reaction with lithiated 2-
|
49 |
-
picoline gives tertiary alcohol (3.1.13), which after dehydration using hydro-
|
50 |
-
chloric acid gives alkene (3.1.14), the hydrogenation of which catalyzed by
|
51 |
-
PtO [25] or in presence Raney-Ni [26] or Rh-Al O [27] gives desired per-
|
52 |
-
2 2 3
|
53 |
-
hexiline(3.1.11) (Scheme3.2).
|
54 |
-
O
|
55 |
-
HO N HCl N H 2/PtO 2
|
56 |
-
3.1.8
|
57 |
-
BuLi O N
|
58 |
-
N or PhLi 3.1.9 3.1.10 H/PtO, H
|
59 |
-
3.1.7 or2 Rane2 y-Ni,
|
60 |
-
3.1.12 HO N HCl N or Rh-Al 2O 3 Perhexiline 3.1.11
|
61 |
-
3.1.13 3.1.14
|
62 |
-
SCHEME3.2 Synthesisofperhexiline.
|
63 |
-
Two enantiomers, (1)- and ((cid:1))-perhexiline have different pharmacody-
|
64 |
-
namic profiles. It has been suggested that the ((cid:1))-enantiomer is primarily
|
65 |
-
responsible for the therapeutic effects, whereas the (1)-enantiomer is primar-
|
66 |
-
ily responsible for the toxic effects [17]. Optically enriched perhexiline has
|
67 |
-
been obtained by resolution of the 1,10-binaphthyl-2,20-diyl(hydrogen)phos-
|
68 |
-
phatediastereomeric salts of perhexiline[28].
|
69 |
-
Synthesis of both enantiomers of perhexiline in high enantiomeric excess
|
70 |
-
through a stereoselective catalytic hydrogenation of the 2-(oxazolidin-2-one)-
|
71 |
-
substituted-pyridine and the elucidation of the absolute configurations of the
|
72 |
-
twoenantiomersofperhexilinewhichwasunknown,wasrecentlyreported[29]."
|
73 |
-
PIPRADROL,259,"Pipradrol (3.1.17) is a dopamine reuptake inhibitor and norepinephrine reup-
|
74 |
-
take inhibitor, a mild amphetamine type psychostimulant with action similar
|
75 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 105
|
76 |
-
to methylphenidate. Pipradrol was developed in the 1950s as an antidepres-
|
77 |
-
sant and was used for treatment of obesity and dementia, but the adverse
|
78 |
-
effects associated with its use and its abuse potential led to its withdrawal
|
79 |
-
and international control [30].
|
80 |
-
Pipradrol (3.1.17) was synthesized from pyridyl Grignard reagent prepared
|
81 |
-
from 2-pyridyl bromide (3.1.15) and bezophenone (3.1.12), which gave diphe-
|
82 |
-
nylpydinemethanol (3.1.16) reduced catalytically to desired pipradrol (3.1.17)
|
83 |
-
[31,32]. Enantiomers of pipradrol were synthesized from (R)- and (S)- pipecolic
|
84 |
-
acidethers(3.1.18)andtheprobableconformationofthebasewasdeduced.All
|
85 |
-
ofthecentralstimulantactivityresidedin(R)-pipradrol,butboththe(R)and(S)
|
86 |
-
isomerspossessedanticonvulsantproperties[33](Scheme3.3).
|
87 |
-
Mg, EtMgBr OH OH
|
88 |
-
Ether or
|
89 |
-
Diethyl cellosolve N H 2/PtO 2 N PhMgBr
|
90 |
-
N Br O 3.1.12 EtOH H Ether MeOOC N
|
91 |
-
3.1.15 3.1.16 Pipradrol 3.1.17 3.1.18
|
92 |
-
SCHEME3.3 Synthesisofpipradrol."
|
93 |
-
MEFLOQUINE,5370,"Mefloquine(3.1.27),soldunderthebrandnameLariam,isanorallyadminis-
|
94 |
-
tered very potent blood schizontocide that has been marketed since 1990 for
|
95 |
-
both malaria prophylaxis and for acute treatment of falciparum malaria. It is
|
96 |
-
a long-acting antimalarial drug known for its efficacy against chloroquine-
|
97 |
-
and SP-resistant Plasmodium falciparum [34(cid:1)37]. Mefloquine can cause
|
98 |
-
serious side effects that include nervous system changes.
|
99 |
-
The synthesis of mefloquine (3.1.27) began with the synthesis quinolin-4-
|
100 |
-
ol (3.1.21) obtained by polyphosphoric acid condensation of the ethyl 4,4,4-
|
101 |
-
trifluoroacetoacetate (3.1.19) with O-trifluoromethylaniline (3.1.20). A further
|
102 |
-
conversion of prepared (3.1.21) by POBr into the 4-bromoquinoline (3.1.22)
|
103 |
-
3
|
104 |
-
led to the transformation of the last 4-Li derivative (3.1.23) followed by CO
|
105 |
-
2
|
106 |
-
carboxylation gave cinclioninic acid (3.1.24). Addition of 2-pyridyllithium
|
107 |
-
(3.1.25) gavethepyridyl ketone(3.1.26).Hydrogenationwith H -PtO gave a
|
108 |
-
2 2
|
109 |
-
goodyieldofdesiredmefloquine(3.1.27)[38,39](Scheme3.4).
|
110 |
-
F 3CO O OEt+F 3C
|
111 |
-
HN
|
112 |
-
15P 0P °A
|
113 |
-
C F
|
114 |
-
3F C3C
|
115 |
-
N OHP 1O 40B °r C3
|
116 |
-
FF 3C3C
|
117 |
-
N
|
118 |
-
Br
|
119 |
-
n E-B thu eL ri
|
120 |
-
F
|
121 |
-
3F C3C
|
122 |
-
N
|
123 |
-
LipC owO
|
124 |
-
Ed2
|
125 |
-
t
|
126 |
-
e
|
127 |
-
h(d
|
128 |
-
r
|
129 |
-
eer ry
|
130 |
-
d)
|
131 |
-
2
|
132 |
-
3.1.19 3.1.20 3.1.21 3.1.22 3.1.23
|
133 |
-
F 3C
|
134 |
-
N Li
|
135 |
-
F 3C F 3C
|
136 |
-
N 3.1.25 N H 2/PtO 2 N
|
137 |
-
F 3C COOH Ether F 3C
|
138 |
-
O
|
139 |
-
N EtOH F 3C OHN
|
140 |
-
H
|
141 |
-
3.1.24 3.1.26 Mefloquine 3.1.27
|
142 |
-
SCHEME3.4 Synthesisofmefloquine.
|
143 |
-
106 Piperidine-BasedDrugDiscovery
|
144 |
-
None of the optically active forms of mefloquine (3.1.27) resolved via its
|
145 |
-
hydrochloride salt with (1)- and ((cid:1))-3-bromo-8-camphorsulfonic acid
|
146 |
-
ammonium salts showed any significant differences in antimalarial activity
|
147 |
-
[40]."
|
148 |
-
MEPIVACAINE,4176,"Many local anesthetics are presently available for clinical use, and among
|
149 |
-
them many derivatives of 2-substituted piperidines. The choice of a particu-
|
150 |
-
lar agent for a particular case is based mainly on its clinical and pharmaco-
|
151 |
-
logical features.
|
152 |
-
Mepivacaine(3.1.31),launchedonthemarketasCarbocaineandPolocaine,
|
153 |
-
is a local anesthetic with a reasonably rapid onset and medium duration of
|
154 |
-
action that became available in the 1960s. Mepivacaine exerts its local anes-
|
155 |
-
thetic effect by blocking voltage-gated sodium channels in peripheral neurons,
|
156 |
-
whichcreatestemporary anesthesia (lackoffeelingornumbness).Mepivacaine
|
157 |
-
is used for causing numbness during surgical procedures, labor, or delivery
|
158 |
-
[41,42].Itmaycausedizziness,drowsiness,orblurredvision.
|
159 |
-
Two basic methods for the synthesis of mepivacaine are proposed. The first
|
160 |
-
comprises the transformation of ethyl 1-methylpipecolate (3.1.30) to
|
161 |
-
1-methylpiperidine-2-carboxylicacidamidewithmagnesium(2,6-dimethylphenyl)
|
162 |
-
amidebromide(3.1.29)underrefluxinether.Amagnesiumderivative(3.1.29),in
|
163 |
-
turn, was prepared via interaction of 2,6-xylidine (3.1.28) with ethylmagnesium
|
164 |
-
bromide[43(cid:1)45].
|
165 |
-
Inanothermethod,picolinicacidwasconvertedtoitsamide(3.1.32),hydro-
|
166 |
-
genated over platinum on carbon catalyst, and alkylated at the piperidine ring
|
167 |
-
nitrogenwithformalinusingpalladiumoncarbon[43,45,46](Scheme3.5).
|
168 |
-
O
|
169 |
-
N
|
170 |
-
H OEt O N O N O N
|
171 |
-
NH 2EtMgBr NMgBr 3.1.30 NH H 2/Pd-C NHH H 2/Pt-C NH
|
172 |
-
Ether Ether CH 2O EtOH, HCl
|
173 |
-
Reflux H 2O
|
174 |
-
3.1.28 3.1.29 Mepivacaine 3.1.31 3.1.33 3.1.32
|
175 |
-
SCHEME3.5 Synthesisofmepivacaine.
|
176 |
-
(1)-Mepivacaine(cid:1)(S)-configuration is a longer-acting local anesthetic
|
177 |
-
than the mixture enantiomers obtained during synthesis [47]."
|
178 |
-
ROPIVACAINE,6847,"Ropivacaine (3.1.37) (Naropin) is the pure S((cid:1))-enantiomer of propivacaine
|
179 |
-
releasedfor clinicaluse in1996.It is along-acting, well toleratedlocal anes-
|
180 |
-
thetic agent and first produced as a pure enantiomer. Its effects and
|
181 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 107
|
182 |
-
mechanism of action are similar to other local anesthetics working via
|
183 |
-
reversible inhibition of sodium ion influx in nerve fibers. It may be a pre-
|
184 |
-
ferred option among other drugs among this class of compounds because of
|
185 |
-
its reduced CNS and cardiotoxic potential and its lower propensity for motor
|
186 |
-
block inthe management ofpostoperative pain and labor pain [48(cid:1)58].
|
187 |
-
Thesynthesisofropivacaine(3.1.37)wascarriedoutstartingwithL-pipeco-
|
188 |
-
licacid(3.1.34),preparedbyaresolutionof(6)-pipecolicacidwith(1)-tartaric
|
189 |
-
acid, which was dissolved in acetyl chloride and converted to acid chloride
|
190 |
-
(3.1.35) with phosphorus pentachloride. The obtained compound (3.1.35) dis-
|
191 |
-
solvedin toluenea solutionof2,6-xylidine(3.1.28) dissolved in themixture of
|
192 |
-
equal volumes of acetone, and N-methyl-2-pyrrolidone was added at 70(cid:3)C to
|
193 |
-
give (1)-L-pipecolic acid-2,6-xylidide (3.1.36). Reactionof this compoundwith
|
194 |
-
propyl bromide in presence of potassium carbonate in i-PrOH/H O gave the
|
195 |
-
2
|
196 |
-
desiredropivacaine(3.1.37)[59](Scheme3.6).
|
197 |
-
NH
|
198 |
-
2
|
199 |
-
PCl 3 3.1.28 O N PrBr O N
|
200 |
-
O N AcCl O N Toluene, NH H K 2CO 3 NH
|
201 |
-
OH H Cl H Acetone/NMP i-PrOH/HO
|
202 |
-
2
|
203 |
-
Ropivacaine
|
204 |
-
3.1.34 3.1.35 3.1.36 3.1.37
|
205 |
-
SCHEME3.6 Synthesisofropivacaine.
|
206 |
-
Another approach for the synthesis of ropivacaine (3.1.37) was proposed
|
207 |
-
via aresolution ofenantiomers ofchiral pipecolic acid-2,6-xylidide [60]."
|
208 |
-
BUPIVACAINE (21293) AND LEVOBUPIVACAINE,1976,"Bupivacaine (3.1.41) (Marcaine) is a local anesthetic of great potency and
|
209 |
-
long duration that has been widely used for years, but it has cardio and CNS
|
210 |
-
toxicsideeffects. Formanyyearsitwasnearlytheonly localanestheticappli-
|
211 |
-
cable to almost all kinds of loco-regional anesthetic techniques, and nowa-
|
212 |
-
days,inmanyoccasions,itisstilltheonlyalternativeavailable[61(cid:1)64].
|
213 |
-
Bupivacaine is currently used in racemic form. At high doses, however,
|
214 |
-
the racemate is potentially hazardous dueto toxicity problems.
|
215 |
-
Currently, racemic bupivacaine (3.1.41) is produced from picolinic acid
|
216 |
-
(3.1.38) either by reduction to pipecolic acid (3.1.39) and then, after conver-
|
217 |
-
sion to corresponding acid chloride (3.1.40) coupling with 2,6-xylidine to
|
218 |
-
give pipecolic acid-2,6-xylidide (3.1.33), or by reducing the pyridyl amide
|
219 |
-
(3.1.43) prepared from picolinic acid chloride (3.1.42) over platinum oxide.
|
220 |
-
The amide intermediate (3.1.33), which can also be used to prepare the anes-
|
221 |
-
thetics ropivacaine (3.1.37) and mepivacaine (3.1.31), was transformed to
|
222 |
-
desired bupivacaine (3.1.41) either by direct alkylation using butyl bromide
|
223 |
-
and potassium carbonate or by reductive amination using butyraldehyde
|
224 |
-
[45,59,65(cid:1)69](Scheme3.7).
|
225 |
-
108 Piperidine-BasedDrugDiscovery
|
226 |
-
NH
|
227 |
-
2
|
228 |
-
H 2/PtO 2 PCl 3 3.1.28
|
229 |
-
EtOH, AcOH O N AcCl O N Toluene,
|
230 |
-
OHH Cl H Acetone/NMP
|
231 |
-
3.1.39 3.1.40
|
232 |
-
BuBr
|
233 |
-
O N NH O N K 2CO 3or O N
|
234 |
-
OH 2 NHH NH
|
235 |
-
3.1.38 SOCl 2 3.1.28 O N H 2/PtO 2 P Hr CC OH OO H,
|
236 |
-
Reflux O N Toluene NH H 2O/HCl 3.1.33 Bupivacaine3 .1.41
|
237 |
-
Cl
|
238 |
-
3.1.42 3.1.43
|
239 |
-
SCHEME3.7 Synthesisofbupivacaine.
|
240 |
-
Enantiomers of bupivacaine can be prepared via diastereomeric salt reso-
|
241 |
-
lution with tartaric acid or by resolution of the amide (3.1.33) with O,
|
242 |
-
O-dibenzoyltartaricacidfollowed by alkylation [47,70].
|
243 |
-
One of enantiomers, S((cid:1)) isomer of the racemic bupivacaine (levobupiva-
|
244 |
-
caine), has equal potency but less cardiotoxic and CNS effects in comparison
|
245 |
-
with both R(1) bupivacaine and bupivacaine racemate. The reduced toxicity of
|
246 |
-
levobupivacaine(3.1.48)givesawidersafetymargininclinicalpractice[71,72].
|
247 |
-
Stereospecific synthesis of levobupivacaine from (S)-lysine have been
|
248 |
-
proposed (Scheme3.8).
|
249 |
-
NH
|
250 |
-
2
|
251 |
-
HO O
|
252 |
-
O
|
253 |
-
NN aa ONO Ac2,
|
254 |
-
,
|
255 |
-
HO O
|
256 |
-
O 3.1.28
|
257 |
-
H 2N N O AcOH AcO N O DCC
|
258 |
-
H H
|
259 |
-
3.1.44 3.1.45
|
260 |
-
1. KCO, BuBr,
|
261 |
-
HN OO 2M
|
262 |
-
.
|
263 |
-
e T2 O sCH I3
|
264 |
-
,
|
265 |
-
HN OO H 2/Pd-C O NHN
|
266 |
-
H
|
267 |
-
K P2 rC CO H3 Oo ,r O NHN
|
268 |
-
AcO N O EtN TsO N O HCOOH
|
269 |
-
H 3 H
|
270 |
-
Levobupivacaine
|
271 |
-
3.1.46 3.1.47 3.1.33 3.1.48
|
272 |
-
SCHEME3.8 Synthesisoflevobupivacaine.
|
273 |
-
Treatment of N-CBZ (S)-lysine (3.1.44) with sodium nitrite in acetic acid
|
274 |
-
yields the acetate (3.1.45). The prepared acetate (3.1.45) was then coupled
|
275 |
-
with dimethyl aniline using N,N0-dicyclohexylcarbodiimide to give the amide
|
276 |
-
(3.1.46)ingoodyield.Theacetategroupwasthenconvertedintothetosylate
|
277 |
-
(3.1.47), which was deprotected and cyclized stereospecifically in one-pot
|
278 |
-
reaction to give the amide (3.1.33) in high yield. Alkylation is easily
|
279 |
-
achieved using an alkyl bromide and K CO without any racemization.
|
280 |
-
2 3
|
281 |
-
Alkylation can also be carried out using butyraldehyde/formic acid although
|
282 |
-
the former is amuchsimpler process[73] (Scheme3.8).
|
283 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 109"
|
284 |
-
FLECAINIDE,3638,"Flecainide (3.1.54), sold under the trade name (Tambocor), is an antiarrhyth-
|
285 |
-
micdrugusedtopreventandtreattachyarrhythmias,awidevarietyofcardiac
|
286 |
-
arrhythmias including paroxysmal atrial fibrillation, paroxysmal supraventric-
|
287 |
-
ular tachycardia and ventricular tachycardia, and has been used extensively
|
288 |
-
worldwide over the last 25 years. It is a sodium channel blocker that is effec-
|
289 |
-
tivemedicinefortachyarrhythmia,forwhichtheotherantiarrhythmicmedica-
|
290 |
-
tion is not effective. Flecainide is also effective in the treatment of
|
291 |
-
catecholaminergic polymorphic ventricular tachycardia but, in this condition,
|
292 |
-
its mechanism of actionis contentious.It can be given either intravenously or
|
293 |
-
orally and its pharmacokinetic properties allow for a relatively long (12
|
294 |
-
hours) effect. Flecainide is an antiarrhythmic agent that has the potential to
|
295 |
-
be considered an narrow therapeutic index drug that has a narrow window
|
296 |
-
between its effective dose and a dose at which it can produce adverse toxic
|
297 |
-
effects (dizziness, vision problems, shortness of breath, headache, nausea,
|
298 |
-
vomiting, stomach pain, diarrhea, constipation, tremor or shaking, tiredness,
|
299 |
-
weakness,anxiety,depression,numbness,ortingling)[74(cid:1)79].
|
300 |
-
The original synthesis of flecainide is described on the Scheme 3.9,
|
301 |
-
where a solution of 2,5-dihydroxybenzoic acid (3.1.49) in acetone was added
|
302 |
-
to a suspension of KHCO in acetone followed by a solution of 2,2,2-tri-
|
303 |
-
3
|
304 |
-
fluoroethyl trifluoromethanesulfonate (3.1.50) and stirred under reflux for 72
|
305 |
-
hours to give 2,2,2-trifluoroethyl 2,5-bis(2,2,2-trifluoroethoxy)benzoate
|
306 |
-
(3.1.51). The key step in this route is aminolysis. For that purpose obtained
|
307 |
-
benzoate (3.1.51) was added to a stirred solution of 2-aminomethylpyridine
|
308 |
-
(3.1.52) in glyme to give (3.1.53). Catalytic hydrogenation of the resultant
|
309 |
-
N-(2-pyridylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide (3.1.54) was
|
310 |
-
carried outinAcOH over PtO togive desired flecainide(3.1.54) [80(cid:1)83].
|
311 |
-
2
|
312 |
-
A significant simplification in the synthesis was achieved by the use of
|
313 |
-
2-aminmethylpiperidine (3.1.55) [84] (Scheme 3.9).
|
314 |
-
N
|
315 |
-
O OH O O CF 3 H 2N N O NH
|
316 |
-
OH +F 3C SO KHCO 3 O CF 3 3.1.52 O CF 3
|
317 |
-
HO O O CF 3 RA efc lue xto 7n 2e
|
318 |
-
h
|
319 |
-
F 3C O Glyme F 3C O
|
320 |
-
3.1.49 3.1.50 3.1.51 3.1.53
|
321 |
-
H/PtO
|
322 |
-
2 2
|
323 |
-
AcOH
|
324 |
-
N
|
325 |
-
H 2N
|
326 |
-
N
|
327 |
-
O NHH
|
328 |
-
H O CF
|
329 |
-
3.1.55 3
|
330 |
-
Glyme FC O
|
331 |
-
3
|
332 |
-
Flecainide 3.1.54
|
333 |
-
SCHEME3.9 Synthesisofflecainide.
|
334 |
-
110 Piperidine-BasedDrugDiscovery"
|
335 |
-
ENCAINIDE,682,"Encainide (3.1.62), formerly marketed as Enkaid, is an antiarrhythmic drug
|
336 |
-
with class IC activity and has been used in the treatment of life-threatening
|
337 |
-
ventricular arrhythmias, symptomatic ventricular arrhythmias, and supraven-
|
338 |
-
tricular arrhythmias. The most common noncardiac side effects were dizzi-
|
339 |
-
ness and blurred vision and proarrhythmic effects. Encainide was associated
|
340 |
-
with increased death rates in patients who had asymptomatic heart rhythm
|
341 |
-
abnormalities after a recent heart attack and was withdrawn from the US
|
342 |
-
market in 1991 [85(cid:1)89].
|
343 |
-
The first step in practically all proposed methods for encainide synthesis
|
344 |
-
is based on condensation of picoline (3.1.56) or picolinium salts (3.1.63)
|
345 |
-
(methiodide, methsulfate) with 2-nitrobenzaldehyde (3.1.57). In some patents
|
346 |
-
and papers a mixture of picoline as well as the aforementioned aldehyde was
|
347 |
-
refluxed in acetic anhydride to give 2-[2-(2-Nitrophenyl)ethenyl-2]pyridine
|
348 |
-
(3.1.57) [90(cid:1)93]. In others a mixture of previously prepared picolinium salts
|
349 |
-
(3.1.63) and 2-nitrobenzaldehyde (3.1.57) was refluxed in methanol in the
|
350 |
-
presence of a catalytic amount of piperidine to give product (3.1.64), which
|
351 |
-
was dehydrated on reflux in the mixture of acetic acid, acetic anhydride and
|
352 |
-
potassium acetateto give (3.1.65)[94,95].
|
353 |
-
A solution of 2-[2-(2-nitrophenyl)ethenyl-2]pyridine (3.1.57) in ethanol
|
354 |
-
was hydrogenated over Pd-C catalyst forming 2-[2-(2-aminophenyl)ethyl-2]
|
355 |
-
pyridine (3.1.58). The obtained product was dissolved in pyridine and acyl-
|
356 |
-
ated with 4-anisoyl chloride (3.1.59) at 70(cid:3)C to give amide (3.1.60). The last
|
357 |
-
was dissolved in warm acetonitrile, treated with dimethyl sulfate (or methyl
|
358 |
-
iodide), and heated to 70(cid:3)C. The resulted crystalline salt (3.1.61) was hydro-
|
359 |
-
genatedinethanolusing platinum oxide togive desired encainide (3.1.62).
|
360 |
-
In the method started from picolinium salts (3.1.63) (methiodide, meth-
|
361 |
-
sulfate), the salt (3.1.65) obtained after dehydration of (3.1.64) was hydroge-
|
362 |
-
nated over a platinum oxide catalyst to give 2-(2-(1-methylpiperidin-2-yl)
|
363 |
-
ethyl)aniline (3.1.66), which was acylated with 4-anisoyl chloride 4- (3.1.59)
|
364 |
-
inacetoneto give desired encainide (3.1.62) (Scheme 3.10).
|
365 |
-
Another interesting method for the synthesis of encainide was proposed,
|
366 |
-
according to which methyl anthranilate (3.1.67) was acylated with 4-anisoyl
|
367 |
-
chloride (3.1.59) in dichloromethane solution to give amide (3.1.68). The
|
368 |
-
obtained product on reaction with 2-pyridyllithium (3.1.69) formed product
|
369 |
-
(3.1.70) underwent one-pot hydrogenation with Pt-C AcOH, followed by addi-
|
370 |
-
tion of Pd-C catalyst, and reductive methylation with formalin in the presence
|
371 |
-
ofPd-Ctogiveencainide(3.1.62)withgoodyield[96](Scheme3.11)."
|
372 |
-
THIORIDAZINE,6558,"Thioridazine (3.1.73) (Mellaril), is one of the older, first-generation typical
|
373 |
-
antipsychotic oral medications used not only for management of
|
374 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 111
|
375 |
-
CHO
|
376 |
-
O
|
377 |
-
O
|
378 |
-
3.1.N 5O 72 NO 2 H 2/Pd-C NH 2 3.1.59 Cl
|
379 |
-
N Ac 2O N EtOH N Pyridine
|
380 |
-
Reflux
|
381 |
-
3.1.56 3.1.58
|
382 |
-
O
|
383 |
-
O O
|
384 |
-
OO S OO H 2/PtO
|
385 |
-
2 HN O
|
386 |
-
HN O MeCN HN O + EtOH N
|
387 |
-
3.1.60N 3.1.61N OO
|
388 |
-
S
|
389 |
-
OO-
|
390 |
-
En 3c .1a .i 6n 2ide
|
391 |
-
O
|
392 |
-
O
|
393 |
-
Cl
|
394 |
-
Acetone
|
395 |
-
CHO 3.1.59
|
396 |
-
AcOH,
|
397 |
-
N+ OO S OO- P Mip3 ee. t1 hri. adN 5 ni7O n oe l2 NO OH 2 N+ OO S OO- A RA Ecc etO O2 flO uN H x, a NO 2 N+ OO S OO- H E2 tO/P Ht NH 2 N
|
398 |
-
3.1.63 3.1.64 3.1.65 3.1.66
|
399 |
-
SCHEME3.10 Synthesisofencainide.
|
400 |
-
O O O 1. H 2/Pt, AcOH O
|
401 |
-
NH 2 COOCH 3O 3.1.59 Cl Li 3.1.6N 9 32 .. H H2 2/P /Pd d- -C C, CH 2O
|
402 |
-
CH 2Cl 2 O NH THF O NHO HN O
|
403 |
-
COOCH 3 N N
|
404 |
-
3.1.67 3.1.68 3.1.70 Encainide 3.1.62
|
405 |
-
SCHEME3.11 Synthesisofencainide.
|
406 |
-
schizophrenia but is also widely used for the relief of anxiety, agitation,
|
407 |
-
mania, manic depressive psychosis, and behavioral problems. However, evi-
|
408 |
-
dence of cardiac complications led to the restriction of its use from 2000 and
|
409 |
-
withdrawal worldwide in 2005 because it caused severe cardiac arrhythmias
|
410 |
-
and excessive death rates associated with its use [97(cid:1)103].
|
411 |
-
It has been shown recently that thioridazine has in vitro activity against
|
412 |
-
multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of
|
413 |
-
Mycobacterium tuberculosis, and is able to cure antibiotic-susceptible and
|
414 |
-
-resistant pulmonary tuberculosis infections. Under proper cardiac evalua-
|
415 |
-
tion procedures, it is safe and does not produce any known cardiopathy
|
416 |
-
[104(cid:1)107].
|
417 |
-
The synthesis of thioridazine was achieved through reaction of 2-
|
418 |
-
(methylthio)-10H-phenothiazine (3.1.71) and 2-(2-chloroethyl)-N-methylpi-
|
419 |
-
peridine (3.1.72) in refluxing xylene in the presence of sodium amide to give
|
420 |
-
desired thioridazine (3.1.73)[108(cid:1)110](Scheme3.12).
|
421 |
-
112 Piperidine-BasedDrugDiscovery
|
422 |
-
S NaNH 2 N N
|
423 |
-
S N + Cl N Reflux S
|
424 |
-
H
|
425 |
-
S
|
426 |
-
3.1.71 3.1.72 Thioridazine 3.1.73
|
427 |
-
SCHEME3.12 Synthesisofthioridazine."
|
428 |
-
RIMITEROL,219,"Rimiterol (3.1.82) is a third-generation, short-acting selective β2-adrenore-
|
429 |
-
ceptoragonist used for the treatment of bronchospasm.
|
430 |
-
It is not effective by the oral route of administration, but may be of value
|
431 |
-
intheintravenoustherapyofsevereasthma.Rimiterolisavailableinpressur-
|
432 |
-
ized aerosols. There have been no reports of significant subjective side
|
433 |
-
effects following the acute administration of rimiterol by aerosol. There are
|
434 |
-
no specific contraindications to rimiterol, but it should be given with care to
|
435 |
-
patients with thyrotoxicosis, cardiovascular disease, diabetes mellitus, renal,
|
436 |
-
or hepatic dysfunction [111(cid:1)118].
|
437 |
-
Synthetic routes to rimiterol (3.1.82) are described. For that purpose 3,4-
|
438 |
-
dimethoxyphenyl-2-pyridylcarbinol (3.1.77) was prepared by reaction
|
439 |
-
between veratraldehyde (3.1.74) and picolinic acid (3.1.75) on reflux in p-
|
440 |
-
cumene, or by treatment of the same aldehyde (3.1.74) with 2-pyridyllithium
|
441 |
-
(3.1.76) prepared from 2-bromopyridine and n-butyllithium in ether.
|
442 |
-
Obtained carbinol (3.1.77) was oxidized to the corresponding ketone (3.1.80)
|
443 |
-
by potassium permanganate in water at 70(cid:3)C, or by dimetliylsulphoxide-
|
444 |
-
acetic anhydride mixtures, or by air in boiling nitrobenzene. An alternative
|
445 |
-
approach for the synthesis of ketone (3.1.81) was proposed via acylation of
|
446 |
-
veratrole (3.1.78) with picolinic acid chloride (3.1.79) in nitrobenzene in the
|
447 |
-
presence ofaluminum chloride.
|
448 |
-
The protecting methoxy groups in (3.1.80) were changed to hydroxyl
|
449 |
-
groups in boiling hydrobromic acid and the product (3.1.81) hydrogenated in
|
450 |
-
methanol over platinum oxide to give desired rimiterol (3.1.82) [119(cid:1)122]
|
451 |
-
(Scheme 3.13)."
|
452 |
-
LOBELINE,1914,"Lobeline (3.1.90) is a plant alkaloid, the main constituent of the 20 known of
|
453 |
-
Lobelia inflata, known as Indian tobacco because native Americans smoked
|
454 |
-
the driedleavesasa substitutefor tobacco.
|
455 |
-
Lobeline has a long history of therapeutic use and, and during the 19th
|
456 |
-
century it was prescribed as an emetic or a respiratory stimulant used to treat
|
457 |
-
asthma, collapse, and anesthetic accidents. Lobeline has multiple mechan-
|
458 |
-
isms ofaction.
|
459 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 113
|
460 |
-
N COOH KMnO/ HO
|
461 |
-
4 2
|
462 |
-
3.1.75
|
463 |
-
p-Cumene O AcO, or
|
464 |
-
O HO N AS ir, Nitro2 benzene O N N 3.1.7C 9OCl
|
465 |
-
Nitrobenzene O
|
466 |
-
O O 3N .1.7L 6i O O O O O
|
467 |
-
3.1.74 Ether 3.1.77 3.1.80 3.1.78
|
468 |
-
HBr
|
469 |
-
HO N O N
|
470 |
-
H H 2/PtO 2
|
471 |
-
CHOH
|
472 |
-
HO 3 HO
|
473 |
-
OH OH
|
474 |
-
Rimiterol 3.1.82 3.1.81
|
475 |
-
SCHEME3.13 Synthesisofrimiterol.
|
476 |
-
Lobeline is a high affinity compound for nicotinic acetylcholine recep-
|
477 |
-
tors, and it is considered a promising candidate for pharmacotherapy of
|
478 |
-
addiction and abuse (smoking, cocaine, amphetamines) and is used in tablets
|
479 |
-
as asmoking cessation remedy.
|
480 |
-
It has been classified as a compound having many nicotine-like effects
|
481 |
-
working as both an agonist and an antagonist at nicotinic receptors, having
|
482 |
-
many nicotine-like effects including hypertension, bradycardia and hypoten-
|
483 |
-
sion, anxiolytic effects, enhancement of cognitive performance. Lobeline
|
484 |
-
inhibits the function of vesicular monoamine and dopamine transporters and
|
485 |
-
diminishes the behavioral effects of nicotine and amphetamines. Lobeline
|
486 |
-
binds to μ-opiate receptors, blocking the effects of opiate receptor agonists.
|
487 |
-
Lobeline esters was shown be useful for treating neurodegenerative diseases
|
488 |
-
of the CNS, which include Alzheimer’s disease, Parkinson’s disease,
|
489 |
-
Huntington’s disease, etc. [123(cid:1)129].
|
490 |
-
Isolation from plants is uneconomical procedure, and many different
|
491 |
-
routesof synthesis have been considered.
|
492 |
-
The first synthesis of lobeline (3.1.90) started with a Claisen condensa-
|
493 |
-
tion between ethyl glutarate (3.1.83) and acetophenone (3.1.84) to give tetra-
|
494 |
-
ketone (3.1.85). The last on treatment with ammonia was cyclized to
|
495 |
-
piperidine-2,6-diylidene derivative (3.1.86). The carbonyl groups in (3.1.86)
|
496 |
-
were reduced by hydrogenation over platinum oxide giving a mixture of
|
497 |
-
two diastereoisomers that were separated by crystallization to give
|
498 |
-
β-norlobelanidiene (3.1.87). The double bonds in obtained compound
|
499 |
-
(3.1.87) were reduced with aluminum amalgam to give (3.1.88), which was
|
500 |
-
converted into its methylated derivative (3.1.89) by treatment with methyl
|
501 |
-
tosylate.Theproducedcompound(3.1.89)wasconvertedinto(1/(cid:1))-lobeline
|
502 |
-
by treatment withan oxidizing agent such aspermanganate, or chromium tri-
|
503 |
-
oxide, and then was dissolved by D-tartaric acid giving ((cid:1))-lobeline (3.1.90)
|
504 |
-
[130] (Scheme3.14).
|
505 |
-
114 Piperidine-BasedDrugDiscovery
|
506 |
-
O
|
507 |
-
O
|
508 |
-
OO
|
509 |
-
O + N Ea tN hH er2 O
|
510 |
-
OO
|
511 |
-
O N 10H 03 °g Cas
|
512 |
-
3.1.83 3.1.84 3.1.85
|
513 |
-
O O 1.H 2/PtO 2 OH OH Al/Hg OH OH TsMe
|
514 |
-
N H Pyridine N H Amalgam N H
|
515 |
-
2. Crystal- Ether
|
516 |
-
3.1.86 lization 3.1.87 3.1.88
|
517 |
-
OH O
|
518 |
-
OH OH 1. KMnO
|
519 |
-
4 N
|
520 |
-
N 2. D-tartaric
|
521 |
-
3.1.89 acid Lobeline 3.1.90
|
522 |
-
SCHEME3.14 Synthesisoflobeline.
|
523 |
-
Another strategy for the synthesis of lobeline (3.1.90) was proposed the
|
524 |
-
same year. For that purpose 2,6-lutidine (3.1.91) was condensed with benzal-
|
525 |
-
dehyde (3.1.92) at high temperature in presence of zinc chloride to give 2,6-
|
526 |
-
distyrylpyridine (3.1.93). Bromination of the last with an excess of bromine
|
527 |
-
rand further dehydrobromination with potassium hydroxide gave dipheny-
|
528 |
-
lethynylpyridine (3.1.95). Hydration of (3.1.95) with concentrated sulfuric
|
529 |
-
acid furnished the diphenacylpyridine (3.1.96). Alkylation of the pyridine
|
530 |
-
ring with methyl tosylate gave a quaternary salt (3.1.97) that was reduced to
|
531 |
-
lobelanidine (3.1.98). A mild oxidation of (1/(cid:1))-lobelanidine (3.1.98) by
|
532 |
-
potassium permanganate gave a mixture of the (1/(cid:1))-lobeline (3.1.90a)
|
533 |
-
[131] Scheme 3.15.
|
534 |
-
O
|
535 |
-
Br Br
|
536 |
-
N + H 2Z 3n 5C °Cl 2 N CB Cr 2 l 4 Br N Br K BO eH n/ zE et nO eH
|
537 |
-
10h
|
538 |
-
3.1.91 3.1.92 3.1.93 3.1.94
|
539 |
-
H 2O O O TsMe O + O H 2/PtO 2
|
540 |
-
N H 2SO 4 N Benzene N Ts– Methanol
|
541 |
-
3.1.95 3.1.96 3.1.97
|
542 |
-
OH OH KMnO OH O
|
543 |
-
4
|
544 |
-
N N
|
545 |
-
3.1.98 (+/–)-Lobeline 3.1.90a
|
546 |
-
SCHEME3.15 Synthesisof(1/-)-lobeline.
|
547 |
-
Described synthetic routes might not be implemented for large scale pre-
|
548 |
-
parationsas they are of lowefficiency.
|
549 |
-
An efficient process for the preparation of ((cid:1))-lobeline (3.1.90) from
|
550 |
-
lobelanine(3.1.99)onindustrialscalehavebeendevelopedusingasymmetric
|
551 |
-
hydrogenation with a catalyst system consisting of cyclooctadiene rhodium
|
552 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 115
|
553 |
-
chloride dimer ([RhCl(COD)] ) and (2R,4R)-4-(dicyclohexyl-phosphino)-2-
|
554 |
-
2
|
555 |
-
(diphenylphosphinomethyl)-N-methylaminocarbonyl pyrrolidine [132,133]
|
556 |
-
(Scheme3.16).
|
557 |
-
SCHEME3.16 Synthesisoflobeline.
|
558 |
-
The chemical precursor for the biosynthesis of lobeline, 2,6-cis-lobelanine
|
559 |
-
(3.1.99), was easily obtained by an elegant one-pot synthesis which involves
|
560 |
-
Mannich condensation and a Robinson type biomimetic reaction of glutaric
|
561 |
-
dialdehyde (3.1.100), benzoylacetic acid (3.1.101), and methylamine hydro-
|
562 |
-
chloride(3.1.102)inacetoneandcitratebuffer[134](Scheme3.17).
|
563 |
-
O O O O
|
564 |
-
pH4, 25°C
|
565 |
-
H OO H + 2 OH + CH 3NH 2 Acetone N
|
566 |
-
Citrate
|
567 |
-
3.1.100 3.1.101 3.1.102 buffer Lobelanine 3.1.99
|
568 |
-
SCHEME3.17 Synthesisoflobelanine.
|
569 |
-
Perfect reviews on synthesis and chemistry of lobeline are published
|
570 |
-
[135(cid:1)138]."
|
571 |
-
ARGATROBAN,2627,"Argatroban (3.1.111) (Arganova) is a highly selective direct thrombin inhibi-
|
572 |
-
tor indicated for use as an anticoagulant for the treatment and prophylaxis of
|
573 |
-
thrombosis in patients with heparin-induced thrombocytopenia (HIT), a dev-
|
574 |
-
astating, life-threatening, immune-mediated complication of therapy with
|
575 |
-
heparin and in patients undergoing percutaneous coronary intervention who
|
576 |
-
have, orare at riskfor HIT.
|
577 |
-
Argatroban does not generate antibodies, is not susceptible to degradation
|
578 |
-
by proteasesand is cleared hepatically.
|
579 |
-
It is a reversible antithrombin agent and therefore exhibits a considerably
|
580 |
-
different pharmacological profile. Its mechanisms of action include several
|
581 |
-
other processes that have not been explored fully to date. These include the
|
582 |
-
inhibition of nonthrombin serine proteases, a direct effect on endothelial cells
|
583 |
-
andthevasculature(generationofnitricoxide),anddownregulationofvarious
|
584 |
-
116 Piperidine-BasedDrugDiscovery
|
585 |
-
inflammatory and thrombotic cytokines. Argatroban is more effective than
|
586 |
-
heparins and hirudins inthe antithrombotic managementof microvascular dis-
|
587 |
-
orders (Heparin has historically been used as the anticoagulant of choice in
|
588 |
-
themanagementofanumberofthromboticdiseases.)[139(cid:1)153].
|
589 |
-
The improved synthesis of argatroban (3.1.111) started with prepara-
|
590 |
-
tion of racemic (6)-trans-benzyl 4-methyl pipecolic acid ester (3.1.104),
|
591 |
-
which was synthesized via α-lithiation and further benzyloxycarbonylation
|
592 |
-
sequence of N-Boc-4-methylpiperidine (3.1.103) using for that purpose
|
593 |
-
s-BuLi and tetramethylethylene-diamine in ether followed by addition of
|
594 |
-
benzyl chloroformate, which yielded the afforded compound (3.1.104).
|
595 |
-
After N-Boc deprotection (HCl, AcOEt), the desired benzyl 4-methyl pipe-
|
596 |
-
colic acid ester (3.1.105) was obtained. The condensation of compound
|
597 |
-
(3.1.105) with
|
598 |
-
Nα -Boc-Nω
|
599 |
-
-nitro-L-arginine (3.1.106), two diastereomers
|
600 |
-
(3.1.107a) and (3.1.107b) were obtained and separated by flash chroma-
|
601 |
-
tography on silica gel to afford the desired (3.1.107a). After removal of
|
602 |
-
the Boc group in (3.1.107a) by (HCl, AcOEt), the obtained compound
|
603 |
-
(3.1.108) was transformed to (3.1.110) by treatment with 3-methyl-8-
|
604 |
-
quinoline sulfonyl chloride (3.1.109) in dichloromethane in the presence
|
605 |
-
of trimethylamine. The hydrogenation of the last over Pd/C catalyst in eth-
|
606 |
-
anol/acetic acid mixture effected the debenzylation of the ester group, the
|
607 |
-
cleavage of the nitro group, and the hydrogenation of the pyridine ring
|
608 |
-
affording desired argatroban (3.1.111) [154] (Scheme 3.18). The first
|
609 |
-
patents on the synthesis of argatroban are based on ethyl 4-methyl pipeco-
|
610 |
-
lic acid ester [155(cid:1)157].
|
611 |
-
NH
|
612 |
-
2 COOH
|
613 |
-
N N
|
614 |
-
TM1 E. Ds A-B , u EL ti her HCl NO 2H Boc NH 3.1.106
|
615 |
-
N 2. ClCHCOOCHPh N CHOOCHPh AcOEt N CHOOCHPh i-BuOCOCl
|
616 |
-
Boc 2 2 Boc 2 2 H 2 2 EtN
|
617 |
-
3
|
618 |
-
3.1.103 3.1.104 3.1.105 THF
|
619 |
-
NH
|
620 |
-
2
|
621 |
-
O COOCH 2Ph NH2 O COOCH2Ph
|
622 |
-
N N N N N N
|
623 |
-
NO 2H Boc NH NO2H BocNH
|
624 |
-
3.1.107a 3.1.107b
|
625 |
-
HCl
|
626 |
-
AcOEt
|
627 |
-
N
|
628 |
-
NNH N2 O NCOOCH 2PhO CS lO 3.1.109 NNH N2 O NCOCH 2P Hh 2/Pd-C HNNH N2 O NCOOH
|
629 |
-
NO 2H NH 2 Et 3N, CH 2Cl 2 NO 2H O 2SNH
|
630 |
-
N
|
631 |
-
EtOH, AcOH H O 2SNH H
|
632 |
-
N
|
633 |
-
3.1.108 3.1.110 Argatroban 3.1.111
|
634 |
-
SCHEME3.18 Synthesisofargatroban.
|
635 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 117"
|
636 |
-
ASCOMYCIN,752,", PIMECROLIMUS (1645),
|
637 |
-
TACROLIMUS (32436), SIROLIMUS (22468), EVEROLIMUS
|
638 |
-
(8972), AND TEMSIROLIMUS (2859)
|
639 |
-
Series of Ascomycin (3.1.112) derivatives(cid:1)Pimecrolimus (3.1.113),
|
640 |
-
Tacrolimus (3.1.114) as well as Sirolimus (3.1.115) and its derivatives
|
641 |
-
Everolimus (3.1.116) and Temsirolimus (3.1.117)(cid:1)can formally be considered
|
642 |
-
1,2-disubstitutedpiperidines(Fig.3.1).
|
643 |
-
O O O
|
644 |
-
OH Cl OH
|
645 |
-
H H H
|
646 |
-
O O O
|
647 |
-
N N N
|
648 |
-
HO
|
649 |
-
O
|
650 |
-
OO OH HO
|
651 |
-
O
|
652 |
-
OO OH HO
|
653 |
-
O
|
654 |
-
OO OH
|
655 |
-
O O O
|
656 |
-
O O O
|
657 |
-
OHO OH
|
658 |
-
O
|
659 |
-
OH
|
660 |
-
O
|
661 |
-
Ascomycin 3.1.112 Pimecrolimus 3.1.113 Tacrolimus 3.1.114
|
662 |
-
HO
|
663 |
-
HO
|
664 |
-
HO
|
665 |
-
HO O HO O O O
|
666 |
-
O
|
667 |
-
N H O O OH N H O O OH N H O O OH
|
668 |
-
O OO O O O OO O O O O O O O
|
669 |
-
HO HO HO
|
670 |
-
O O O
|
671 |
-
H H H
|
672 |
-
O O O
|
673 |
-
Sirolimus 3.1.115 Everolimus 3.1.116 Temsirolimus 3.1.117
|
674 |
-
FIGURE3.1 Ascomycin,pimecrolimus,tacrolimus,sirolimus,everolimus,andtemsirolimus.
|
675 |
-
The 23-membered macrolactam Ascomycin (3.1.112) and 31-membered
|
676 |
-
macrocyclic polyketide Sirolimus (3.1.115) are fermentation products origi-
|
677 |
-
nally isolated from the cultured broth of Streptomyceshygroscopicus.
|
678 |
-
Ascomycin and its derivatives are powerful calcium-dependent serine/
|
679 |
-
threonine protein phosphatase (calcineurin (CaN), protein phosphatase 2B
|
680 |
-
inhibitors and have been used therapeutically mainly as immunosuppressants
|
681 |
-
in inflammatory skin diseases. Calcineurin inhibitors (CNIs) have been also
|
682 |
-
proposed for the treatment of inflammatory and degenerative brain diseases.
|
683 |
-
Ascomycin and its derivatives may be useful in preventing ischemic brain
|
684 |
-
damage and neuronal death in the treatment of CNS and exhibit anticonvul-
|
685 |
-
sant activity. Nonimmunosuppressantactivity of its derivatives as CNS drugs
|
686 |
-
probablyshould befurther explored.
|
687 |
-
Pimecrolimus (3.1.113) prepared by the substitution of 32-hydroxy group
|
688 |
-
in ascomycin with a chlorine with an inversion of configuration and tacroli-
|
689 |
-
mus (3.1.114), which was obtained by using the mutant Streptomyces
|
690 |
-
118 Piperidine-BasedDrugDiscovery
|
691 |
-
species. These compounds have been successfully introduced in the treat-
|
692 |
-
ment of atopic dermatitis. They inhibit T cell proliferation, mast cell degran-
|
693 |
-
ulation, production, and the release of IL-2, IL-4, IF-γ, and TNF-α. They do
|
694 |
-
not effect endothelial cells and fibroblasts, so they do not induce skin atro-
|
695 |
-
phy and consequentlyare well tolerated and safe.
|
696 |
-
They have been used also for treatment of other inflammatory skin dis-
|
697 |
-
eases including psoriasis, lichen planus, seborrheic dermatitis, allergic
|
698 |
-
contact dermatitis, vitiligo, pyoderma gangrenosum, alopecia areata, graft-
|
699 |
-
versus-host disease, akne rosacea, etc. The pharmacology, use, and modifica-
|
700 |
-
tions ofAscomycin and its derivativesare reviewed[158(cid:1)167].
|
701 |
-
Sirolimus (3.1.115) also known as Rapamycin, and its derivatives,
|
702 |
-
Everolimus (3.1.116) and Temsirolimus (3.1.117), are a class of immunosup-
|
703 |
-
pressive drugs approvedfor solid organ transplantation.
|
704 |
-
Sirolimus, a mammalian target of rapamycin (mTOR) inhibitors, are a
|
705 |
-
kind of macrolide antibiotics, producing by Streptomyces hygroscopicus in
|
706 |
-
appropriate fermenting culture had been found to have also potent antiin-
|
707 |
-
flammatory, antineoplasms, antiatherosclerosis, antiaging, neuroprotection
|
708 |
-
properties.
|
709 |
-
Sirolimus and its derivates, everolimus and temsirolimus, have a similar
|
710 |
-
structure that inhibits the proliferation of T cells by interfering with a
|
711 |
-
serine-threonine kinase, called mTOR. By inhibiting the ubiquitous mTOR
|
712 |
-
pathway, they present a peculiar safety profile. Apart from their immuno-
|
713 |
-
suppressive effects, these agents may also inhibit endothelial intimal prolif-
|
714 |
-
eration, the replication of cytomegalovirus, and the development of certain
|
715 |
-
cancers. They are used not only as immunosuppressants after organ trans-
|
716 |
-
plantation in combination with CNIs but also as proliferation signal inhibi-
|
717 |
-
tors coated on drug-eluting stents [168(cid:1)173].
|
718 |
-
REFERENCES
|
719 |
-
[1] BusardoFP,KyriakouC,CipolloniL,ZaamiS,FratiP.Fromclinicalapplicationtocogni-
|
720 |
-
tive enhancement: the example of methylphenidate. Curr Neuropharmacol 2016;14
|
721 |
-
(1):17(cid:1)27.
|
722 |
-
[2] GadothN.Methylphenidate(ritalin):whatmakesitsowidelyprescribedduringthelast60
|
723 |
-
years?CurrDrugTherapy2013;8(3):171(cid:1)80.
|
724 |
-
[3] DevosD,MoreauC,DelvalA,DujardinK,DefebvreL,BordetR.Methylphenidate.CNS
|
725 |
-
Drugs2013;27(1):1(cid:1)14.
|
726 |
-
[4] Patrick KS, Markowitz JS. Pharmacology of methylphenidat, amphetamine enantiomers
|
727 |
-
andpemolineinattention-deficithyperactivitydisorder.HumanPsychopharmacol1997;12
|
728 |
-
(6):527(cid:1)46.
|
729 |
-
[5] HartmannM,PanizzonL.Pyridineandpiperidinederivatives,US2507631;1950.
|
730 |
-
[6] HuntleyCFM,KataistoEW,LaLumiereKD,ReischHA.Aprocessforthepreparationof
|
731 |
-
methylphenidatehydrochloride,WO2012080834;2012.
|
732 |
-
[7] StefanickSM,SmithBJ,BarrC,DobishMC.Aprocessforthepreparationofmethylphe-
|
733 |
-
nidate,WO2015069505;2015.
|
734 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 119
|
735 |
-
[8] DeutschHM,ShiQ,Gruszecka-KowalikE,SchweriMM.Synthesisandpharmacologyof
|
736 |
-
potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-
|
737 |
-
substitutedmethylphenidateanalogs.JMedChem1996;39(6):1201(cid:1)9.
|
738 |
-
[9] PrashadM,KimH-Y,LuY,LiuY,HarD,RepicO,etal.Thefirstenantioselectivesynthe-
|
739 |
-
sisof(2R,20R)-threo-(1)-methylphenidatehydrochloride.JOrgChem1999;64(5):1750(cid:1)3.
|
740 |
-
[10] RometschR.Stereoisomersofα-phenyl-α-(2-piperidyl)aceticacid,US2838519;1958.
|
741 |
-
[11] RometschR.Conversionofstereoisomers,US2957880;1960.
|
742 |
-
[12] Khetani V, Luo Y, Ramaswamy S. Resolution of piperidylacetamide stereoisomers, WO
|
743 |
-
9852921;1998.
|
744 |
-
[13] Prashad M, Har D, Repic O, Blacklock TJ, Giannousis P. Enzymic resolution of
|
745 |
-
(6)-threo-methylphenidate.Tetrahedron:Asymmetry1998;9(12):2133(cid:1)6.
|
746 |
-
[14] RenalsonKS,KalambeAB,PanhekarDY.Efficientmethodforenantioselectivesynthesis
|
747 |
-
ofdexmethylphenidatehydrochloride(Focalin).IntJResDevelopPharmLifeSci2014;3
|
748 |
-
(4):1066(cid:1)9.
|
749 |
-
[15] Weisz I, Dudas A. Stereoisomeric 2-piperidylphenylacetic acid esters. The spatial struc-
|
750 |
-
tureofa7-phenylazabicyclo[4.2.0]octane.MonatshChem1960;91:840(cid:1)9.
|
751 |
-
[16] Shafi’eeA,HiteG.Absoluteconfigurationsofthepheniramines,methylphenidates,and
|
752 |
-
pipradrols.JMedChem1969;12(2):266(cid:1)70.
|
753 |
-
[17] Ashrafian H, Horowitz JD, Frenneaux MP. Perhexiline. Cardiovasc Drug Rev 2007;25
|
754 |
-
(1):76(cid:1)97.
|
755 |
-
[18] HorowitzJD,ChirkovYY.Perhexilineandhypertrophiccardiomyopathy:anewhorizon
|
756 |
-
formetabolicmodulation.Circulation2010;122(16):1547(cid:1)9.
|
757 |
-
[19] Killalea SM, Krum H. Systematic review of the efficacy and safety perhexiline in the
|
758 |
-
treatmentofischemicheartdisease.AmJCardiovascDrugs2001;1(3):193(cid:1)204.
|
759 |
-
[20] HudakWJ,LewisRE,LucasRW,KuhnWL.Reviewofthecardiovascularpharmacology
|
760 |
-
ofperhexiline.PostgraduateMedicalJSuppl1973;49(3):16(cid:1)25.
|
761 |
-
[21] WinsorT.Clinicalevaluationofperhexilinemaleate.ClinPharmacolTherapeut1970;11
|
762 |
-
(1):85(cid:1)9.
|
763 |
-
[22] HudakWJ,LewisRE,KuhnWL.Cardiovascularpharmacologyofperhexiline.JPharmacol
|
764 |
-
ExpTherapeut1970;173(2):371(cid:1)82.
|
765 |
-
[23] PalopoliFP,KuhnWL.1,1-Dicyclohexyl-2-(2-piperidyl)ethylene,US3038905;1962.
|
766 |
-
[24] NoInventordataavailable,1,1-Dicyclohexyl-2-(2-piperidyl)ethane,GB1025578;1966.
|
767 |
-
[25] BianchettiG,ViscardiR.1,1-Dicyclohexyl-2-(20-piperidyl)ethane,DE2643473;1977.
|
768 |
-
[26] Horgan SW, Palopoli FP, Schwoegler EJ. 2-(2,2-Dicyclohexylethyl)piperidines, DE
|
769 |
-
2713500;1977.
|
770 |
-
[27] HorganSW,PalopoliFP,WenstrupDL.DE2714081;1977.
|
771 |
-
[28] Davies BJ, Herbert MK, Culbert JA, Pyke SM, Coller JK, Somogyi AA, et al. J
|
772 |
-
ChromatogrBAnalytTechnolBiomedLifeSci2006;832(1):114(cid:1)20.
|
773 |
-
[29] TsengC,GreigIR,HarrisonWTA,ZandaM.Asymmetricsynthesisandabsoluteconfigu-
|
774 |
-
rationof(1)-and(2)-perhexiline.Synthesis2016;48(1):73(cid:1)8.
|
775 |
-
[30] White MW,Archer JRH. Pipradroland pipradrolderivatives. In: Dargan PI,Wood DM,
|
776 |
-
editors.Novelpsychoactivesubstances.Amsterdam:ElsevierInc.;2013.p.233(cid:1)59.
|
777 |
-
[31] Tilford CH, Shelton RS, Van Campen Jr. MG. Histamine antagonists. Basically substi-
|
778 |
-
tutedpyridinederivatives.JAmChemSoc1948;70:4001(cid:1)9.
|
779 |
-
[32] WernerHW,TilfordCH.α,α-Diarylpiperidinemethanols,US2624739;1953.
|
780 |
-
[33] Portoghese PS, PazdernikTL, Kuhn WL, Hite G, Shafi’ee A. Stereochemicalstudies on
|
781 |
-
medicinal agents. V. Synthesis, configuration, and pharmacological activity of pipradrol
|
782 |
-
enantiomers.JMedChem1968;11(1):12(cid:1)15.
|
783 |
-
120 Piperidine-BasedDrugDiscovery
|
784 |
-
[34] Singh SK, Singh S. A brief history of quinoline as antimalarial agents. Int J Pharm Sci
|
785 |
-
RevRes2014;25(1):295(cid:1)302.
|
786 |
-
[35] WongsrichanalaiC,PrajakwongS,MeshnickSR,ShanksGD,ThimasarnK.Mefloquine-
|
787 |
-
its 20 years in the Thai Malaria Control Program. Southeast Asian J Tropical Med Publ
|
788 |
-
Health2004;35(2):300(cid:1)8.
|
789 |
-
[36] WinstanleyP.Mefloquine:thebenefitsoutweightherisks.BritJClinPharmacol1996;42
|
790 |
-
(4):411(cid:1)13.
|
791 |
-
[37] PalmerKJ,HollidaySM,BrogdenRN.Mefloquine:areviewofitsantimalarialactivity,
|
792 |
-
pharmacokineticpropertiesandtherapeuticefficacy.Drugs1993;45(3):430(cid:1)75.
|
793 |
-
[38] Lutz RE,Ohnmacht CJ, Patel AR. Antimalarials. 7. Bis(trifluoromethyl)-α-(2-piperidyl)-
|
794 |
-
4-quinolinemethanols.JMedChem1971;14(10):926(cid:1)8.
|
795 |
-
[39] Bomches H, Hardegger B. High purity preparation of mefloquine hydrochloride, EP
|
796 |
-
92185;1983.
|
797 |
-
[40] Carroll FI, Blackwell JT. Optical isomers of aryl-2-piperidylmethanol antimalarial agents.
|
798 |
-
Preparation,opticalpurity,andabsolutestereochemistry.JMedChem1974;17(2):210(cid:1)19.
|
799 |
-
[41] TagarielloV,CaporuscioA,DeTommasoO.Mepivacaine:updateonanevergreenlocal
|
800 |
-
anaesthetic.MinervaAnestesiol2001;67(9Suppl.1):5(cid:1)8.
|
801 |
-
[42] HelmyR,YoussefMH,RasheedMH,El-ShirbiniA,MandourA.Pharmacologicalprop-
|
802 |
-
erties of a new local anesthetic drug (mepivacaine hydrochloride). J Egypt Med Assoc
|
803 |
-
1967;50(11(cid:1)12):688(cid:1)701.
|
804 |
-
[43] EkenstamBT,EgnerBPH.AmidesofN-alkylpiperidinemonocarboxylicacidandN-alkyl-
|
805 |
-
pyrrolidine-α-monocarboxylicacids,US2799679;1957.
|
806 |
-
[44] RinderknechtH.Newlocalanesthetics.HelvChimActa1959;42:1324(cid:1)7.
|
807 |
-
[45] Ekenstam BT, Egner B, Pettersson G. Local anesthetics. I. N-Alkylpyrrolidine and
|
808 |
-
N-alkylpiperidinecarboxylicacidamides.ActaChemScand1957;11:1183(cid:1)90.
|
809 |
-
[46] Pettersson BG. N-Methylpiperidine-2-carboxylic acid 2,6-xylidide hydrochloride, DE
|
810 |
-
2726200;1978.
|
811 |
-
[47] TullarBF.Opticalisomersofmepivacaineandbupivacaine.JMedChem1971;14(9):891(cid:1)2.
|
812 |
-
[48] McClureJH.Ropivacaine.BritJAnaesth1996;76(2):300(cid:1)7.
|
813 |
-
[49] McClellanKJ,FauldsD.Ropivacaine:anupdateofitsuseinregionalanesthesia.Drugs
|
814 |
-
2000;60(5):1065(cid:1)93.
|
815 |
-
[50] Simpson D, Curran MP, Oldfield V, Keating GM. Ropivacaine: a review of its use in
|
816 |
-
regionalanaesthesiaandacutepainmanagement.Drugs2005;65(18):2675(cid:1)717.
|
817 |
-
[51] Hansen TG. Ropivacaine: a pharmacological review. Exp Rev Neurotherapeut 2004;4
|
818 |
-
(5):781(cid:1)91.
|
819 |
-
[52] WangRD,DanglerLA,GreengrassRA.Updateonropivacaine.ExpOpinPharmacother
|
820 |
-
2001;2(12):2051(cid:1)63.
|
821 |
-
[53] BansalT,HoodaS.Ropivacaine-anovelandpromisinglocalanaestheticdrug.AsianJ
|
822 |
-
PharmaceutClinRes2012;5(Suppl.1):13(cid:1)15.
|
823 |
-
[54] Kuthiala G, Chaudhary G. Ropivacaine: a review of its pharmacology and clinical use.
|
824 |
-
IndJAnaesth2011;55(2):104(cid:1)10.
|
825 |
-
[55] OwenMD,DeanLS.Ropivacaine.ExpOpinPharmacother2000;1(2):325(cid:1)36.
|
826 |
-
[56] MarkhamA,FauldsD.Ropivacaine:areviewofitspharmacologyandtherapeuticusein
|
827 |
-
regionalanesthesia.Drugs1996;52(3):429(cid:1)49.
|
828 |
-
[57] CasatiA,PutzuM.BestPractResClinAnaesthesiol2005;19(2):247(cid:1)68.
|
829 |
-
[58] DeJongRH.Ropivacaine:whiteknightordarkhorse?RegAnesth1995;20(6):474(cid:1)81.
|
830 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 121
|
831 |
-
[59] EkenstamBT,BovinC.L-N-n-Propylpipecolicacid2,6-xylidide,WO8500599;1985.
|
832 |
-
[60] FederselHJ,JakschP,SandbergR.Anefficientsynthesisofanew,chiral20,60-pipecolox-
|
833 |
-
ylididelocalanestheticagent.ActaChemScand1987;B41(10):757(cid:1)61.
|
834 |
-
[61] TuominenM.Bupivacainespinalanaesthesia.ActaanaesthesiolScand1991;35(1):1(cid:1)10.
|
835 |
-
[62] Chapman PJ. Review: bupivacaine -a long-acting local anaesthetic. Australian Dental J
|
836 |
-
1987;32(4):288(cid:1)91.
|
837 |
-
[63] BabstCR,GillingBN.Bupivacaine:areview.AnesthesiaProgress1978;25(3):87(cid:1)91.
|
838 |
-
[64] Gazzotti F, Bertellini E, Tassi A. Best indications for local anaesthetics: bupivacaine.
|
839 |
-
Minervaanestesiologica2001;67(9Suppl.1):9(cid:1)14.
|
840 |
-
[65] TullarBF,BolenCH.1-Butyl-20,60-pipecoloxylidide,GB1166802;1969.
|
841 |
-
[66] No Inventor data available. Amides of N-alkylpiperidinemonocarboxylic acid and N-
|
842 |
-
alkylpyrrolidine-α-monocarboxylicacids,GB775749;1957.
|
843 |
-
[67] No Inventor data available. Amides of N-alkylpiperidinemonocarboxylic acid and
|
844 |
-
N-alkylpyrrolidine-α-monocarboxylicacids,GB775750;1957.
|
845 |
-
[68] BoforsA.N-Alkyl-andcycloalkylpiperidinecarboxylicacidamides,GB869978;1958.
|
846 |
-
[69] Ekesntam BT, Pettersson BG. Synthesis of N-alkylpiperidine and N-alkylpyrrolidine-
|
847 |
-
α-carboxylicacidamides,US2955111;1960.
|
848 |
-
[70] Luduena FP, Tullar BF. Optical isomers of an aminoacyl xylidide, ZA 6802611; 1968.
|
849 |
-
FromS.African(1968),ZA680261119681212.
|
850 |
-
[71] Ivani G, Borghi B, van Oven H. Levobupivacaine. Minerva Anestesiologica
|
851 |
-
2001;67(9 Suppl. 1):20(cid:1)3.
|
852 |
-
[72] McLeodGA,BurkeD.Levobupivacaine.Anaesthesia2001;56(4):331(cid:1)41.
|
853 |
-
[73] AdgerB,DyerU,HuttonG,WoodsM.Stereospecificsynthesisoftheanestheticlevobu-
|
854 |
-
pivacaine.TetrahedronLett1996;37(35):6399(cid:1)402.
|
855 |
-
[74] Hudak JM, Banitt EH, Schmid JR. Discovery and development of flecainide. Am J
|
856 |
-
Cardiol1984;53(5):17(cid:1)20.
|
857 |
-
[75] Aliot E, Capucci A, Crijns HJ, Goette A, Tamargo J. Twenty-five years in the making:
|
858 |
-
flecainideissafeandeffectiveforthemanagementofatrialfibrillation.Europace2011;13
|
859 |
-
(2):161(cid:1)73.
|
860 |
-
[76] RodenDM,WoosleyRL.Flecainide:anewagentforthetreatmentofventriculararrhyth-
|
861 |
-
mias.NEnglJMed1986;315(1):36(cid:1)41.
|
862 |
-
[77] TamargoJ,LeHeuzeyJ,MaboP.Narrowtherapeuticindexdrugs:aclinicalpharmaco-
|
863 |
-
logicalconsiderationtoflecainide.EurJClinPharmacol2015;71(5):549(cid:1)67.
|
864 |
-
[78] ApostolakisS,OeffM,TebbeU,FabritzL,BreithardtG,KirchhofP.Flecainideacetate
|
865 |
-
for the treatment of atrial and ventricular arrhythmias. Exp Opin Pharmacother 2013;14
|
866 |
-
(3):347(cid:1)57.
|
867 |
-
[79] HolmesB,HeelRC.Flecainide:apreliminaryreviewofitspharmacodynamicproperties
|
868 |
-
andtherapeuticefficacy.Drugs1985;29(1):1(cid:1)33.
|
869 |
-
[80] Banitt EH, Coyne WE, Schmid JR, Mendel A. Antiarrhythmics. N-(Aminoalkylene)tri-
|
870 |
-
fluoroethoxybenzamides and N-(aminoalkylene)trifluoroethoxynaphthamides. J Med
|
871 |
-
Chem1975;18(11):1130(cid:1)4.
|
872 |
-
[81] BanittEH,BronnWR,CoyneWE,SchmidJR.Antiarrhythmics.2.Synthesisandantiar-
|
873 |
-
rhythmic activity of N-(piperidylalkyl)trifluoroethoxybenzamides. J Med Chem 1977;20
|
874 |
-
(6):821(cid:1)6.
|
875 |
-
[82] BanittEH,BronnWR.Derivativesofpyrrolidineandpiperidine,US3900481;1975.
|
876 |
-
[83] BanittEH,BronnWR.Derivativesofpyrrolidineandpiperidine,US4013670;1977.
|
877 |
-
[84] BanittEH,BronnWR.Antiarrhythmicmethodutilizingfluoroalkoxy-N-piperidylandpyr-
|
878 |
-
idylbenzamides,US4005209;1977.
|
879 |
-
122 Piperidine-BasedDrugDiscovery
|
880 |
-
[85] WoosleyRL,WoodAJJ,RodenDM.Encainide.NEnglJMed1988;318(17):1107(cid:1)15.
|
881 |
-
[86] Mitchell LB, Winkle RA. Encainide. New Drugs Annual: Cardiovasc Drugs
|
882 |
-
1983;1:93(cid:1)107.
|
883 |
-
[87] Antonaccio MJ, Gomoll AW, Byrne JE. Encainide. Cardiovasc Drugs Ther 1989;3
|
884 |
-
(5):691(cid:1)710.
|
885 |
-
[88] BrogdenRN,ToddPA.Encainide.Areviewofitspharmacologicalpropertiesandthera-
|
886 |
-
peuticefficacy.Drugs1987;34(5):519(cid:1)38.
|
887 |
-
[89] Somberg JC, Zanger D, Levine E, Tepper D. Encainide: a new and potent antiarrhyth-
|
888 |
-
mic.AmHeartJ1987;114(4Pt1):826(cid:1)35.
|
889 |
-
[90] Dykstra SJ, Minielli JL. Pharmacologically active substituted piperidin, DE 2210154;
|
890 |
-
1972.
|
891 |
-
[91] DykstraSJ,MinielliJL.Substitutedpiperidines,US4000143;1976.
|
892 |
-
[92] DykstraSJ,MinielliJL,LawsonJE,FergusonHC,DunganKW.Lysergicacidandquin-
|
893 |
-
idineanalogs.2-(o-Acylaminophenethyl)piperidines.JMedChem1973;16(9):1015(cid:1)20.
|
894 |
-
[93] Johnson PC, Covington RR. Synthesis of encainide-13C hydrochloride from 2-
|
895 |
-
nitrobenzaldehyde-formyl-13C.JLabelledCompRadiopharm1982;19(8):953(cid:1)8.
|
896 |
-
[94] No Inventor data available, Preparation of the antiarrhythmic encainide, BE 1000112;
|
897 |
-
1988.
|
898 |
-
[95] Dillon JL, Spector RH. Process for the preparation of encainide hydrochloride, US
|
899 |
-
4675409;1987.
|
900 |
-
[96] NoInventordataavailable,Encainide,NL8204775;1983.
|
901 |
-
[97] Gold N. Experience with thioridazine (“Melleril”) therapy. J Mental Sci
|
902 |
-
1961;107:523(cid:1)8.
|
903 |
-
[98] JonesAL,LewisDJ,MillerA.Useofthioridazine(mellaril)inavarietyofclinicalset-
|
904 |
-
tings.CMAJ1960;83:948(cid:1)9.
|
905 |
-
[99] Barsa JA, Saunders JC. Thioridazine (mellaril) in the treatment of chronic schizophre-
|
906 |
-
nics.AmJPsychiatry1960;116:1028(cid:1)9.
|
907 |
-
[100] Kirchner V, Kelly CA, Harvey RJ. Thioridazine for dementia. Cochrane Database Syst
|
908 |
-
Rev2001;(3):CD000464.
|
909 |
-
[101] Sultana A, Reilly J, Fenton M. Thioridazine or schizophrenia. Cochrane Database Syst
|
910 |
-
Rev2000;(3):CD001944.
|
911 |
-
[102] Fenton M, Rathbone J, Reilly J, Sultana A. Thioridazine for schizophrenia. Cochrane
|
912 |
-
DatabaseSystRev2007;(3):CD001944.
|
913 |
-
[103] Abdel-MoetyEM,Al-Rashood,KhalidA.Analyticalprofileofthioridazineandthiorida-
|
914 |
-
zinehydrochloride.AnalProfilesDrugSubst1989;18:459(cid:1)525.
|
915 |
-
[104] DuttaNK,KarakousisPC.Thioridazinefortreatmentoftuberculosis:promisesandpit-
|
916 |
-
falls.Tuberculosis2014;94(6):708(cid:1)11.
|
917 |
-
[105] AmaralL,MolnarJ.WhyandhowtheoldneurolepticthioridazinecurestheXDR-TB.
|
918 |
-
Pharmaceuticals2012;5:1021(cid:1)31.
|
919 |
-
[106] Thanacoody RHK. Thioridazine: the good and the bad. Rec Pat Anti-Infect Drug Disc
|
920 |
-
2011;6(2):92(cid:1)8.
|
921 |
-
[107] Thanacoody HKR. Thioridazine: resurrection as an antimicrobial agent? Brit J Clin
|
922 |
-
Pharmacol2007;64(5):566(cid:1)74.
|
923 |
-
[108] Bourquin JP, Schwarb G, Gamboni G, Fischer R, Ruesch L, Guldimann S, et al.
|
924 |
-
Syntheses in the phenothiazine family. II. N-Substituted phenothiazinethiol derivatives.
|
925 |
-
HelvChimActa1958;41:1072(cid:1)108.
|
926 |
-
[109] NoInventordataavailable.2-Mercaptophenothiazinederivatives,GB863550;1961.
|
927 |
-
[110] NoInventordataavailable.2-Mercaptophenothiazinederivatives,GB863551;1961.
|
928 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 123
|
929 |
-
[111] PinderRM,BrogdenRN,SpeightTM,AveryGS.Rimiterol:areviewofitspharmaco-
|
930 |
-
logicalpropertiesandtherapeuticefficacyinasthma.Drugs1977;14(2):81(cid:1)104.
|
931 |
-
[112] Muittari A. A brief review of sympathomimetic bronchodilators and a description of a
|
932 |
-
newselectiveagent,rimiterolhydrobromide.Respiration1978;35(3):173(cid:1)80.
|
933 |
-
[113] Carney I, Daly MJ, Lightowler JE, Pickering RW. Comparative pharmacology of WG
|
934 |
-
253 (rimiterol hydrobromide), a new bronchodilator. Arch Int Pharmacodyn, Therapie
|
935 |
-
1971;194(2):334(cid:1)45.
|
936 |
-
[114] Griffin JP, Turner P. New bronchodilator (WG 253) in man. J Clin Pharmacol New
|
937 |
-
Drugs1971;11(4):280(cid:1)7.
|
938 |
-
[115] Bowman WC, Rodger IW. Actions of the sympathomimetic bronchodilator, rimiterol
|
939 |
-
(R798), on the cardiovascular, respiratory, and skeletal muscle systems of the anesthe-
|
940 |
-
tizedcat.BritJPharmacol1972;45(4):574(cid:1)83.
|
941 |
-
[116] Palma-Carlos AG, Palma-Carlos GS. Beta-2-agonists of third generation. Allergie et
|
942 |
-
Immunologie1986;18(4):31(cid:1)32,35.
|
943 |
-
[117] LaiCK,TwentymanOP,HolgateST.Theeffectofanincreaseininhaledallergendose
|
944 |
-
after rimiterol hydrobromide on the occurrence and magnitude of the late asthmatic
|
945 |
-
response and the associated change in nonspecific bronchial responsiveness. Am Rev
|
946 |
-
RespDis1989;140(4):917(cid:1)23.
|
947 |
-
[118] Ydreborg SO, Svedmyr N, Thiringer G. Comparison of rimiterol and terbutaline, given
|
948 |
-
byaerosol,inalong-termstudy.ScandJRespDiseases1977;58(2):117(cid:1)24.
|
949 |
-
[119] Sankey GH, Whiting KDE. Cyclic adrenaline derivatives. Aryl-2-piperidylcarbinols. J
|
950 |
-
HetChem1972;9(5):1049(cid:1)55.
|
951 |
-
[120] SankeyGH,WhitingKDE.α-(Hydroxy-andalkoxy-substituted)phenyl-α-(2-piperidinyl)
|
952 |
-
methanols,usefulasbronchodilators,DE2024049;1970.
|
953 |
-
[121] SankeyGH,WhitingKDE.α-(Hydroxyandalkoxysubstituted)phenyl-α-(2-piperidinyl)-
|
954 |
-
methanols,US3910934;1975.
|
955 |
-
[122] KaiserC,RossST.Bronchodilatinghydroxyphenyl-2-piperidinylcarbinols,DE2047937;
|
956 |
-
1971.
|
957 |
-
[123] AldaheffM.Lobelinesulfate.DrugsofToday1977;13(6):236(cid:1)9.
|
958 |
-
[124] Damaj MI, Patrick GS, Creasy KR, Martin BR. Pharmacology of lobeline, a nicotinic
|
959 |
-
receptorligand.JPharmacolExpTher1997;282(1):410(cid:1)19.
|
960 |
-
[125] DwoskinLP,CrooksPA.Anovelmechanismofactionandpotentialuseforlobelineas
|
961 |
-
atreatmentforpsychostimulantabuse.BiochemPharmacol2002;63(2):89(cid:1)98.
|
962 |
-
[126] MillerDK,LeverJR,RodveltKR,BaskettJA,WillMJ,KrackeGR.Lobeline,apoten-
|
963 |
-
tialpharmacotherapyfordrugaddiction,bindstoμopioidreceptorsanddiminishesthe
|
964 |
-
effectsofopioidreceptoragonists.DrugAlcoholDepend2007;89(2(cid:1)3):282(cid:1)91.
|
965 |
-
[127] Willyard C. Pharmacotherapy: quest for the quitting pill. Nature 2015;522(7557):
|
966 |
-
S53(cid:1)5.
|
967 |
-
[128] McCurdy CR, Miller RL, Beach JW. Lobeline:a naturalproduct with high affinity for
|
968 |
-
neuronal nicotinic receptors and a vast potential for use in neurological disorders.
|
969 |
-
In:CutlerSJ,CutlerHG,editors.Biologicallyactivenaturalproducts.BocaRaton,FL:
|
970 |
-
CRCPress;2000.p.151(cid:1)62.
|
971 |
-
[129] Stead LF, Hughes JR. Lobeline for smokingcessation. Cochrane Database SystemRev
|
972 |
-
2012;(2):CD000124.
|
973 |
-
[130] Wieland H, Drishaus I. Lobelia alkaloids. IV. Synthesis of lobelia alkaloids. Just Lieb
|
974 |
-
Ann1929;473:102(cid:1)18.
|
975 |
-
[131] Scheuing G, Winterhalder L. Synthesis of lobelia alkaloids. Just Lieb Ann
|
976 |
-
1929;473:126(cid:1)36.
|
977 |
-
124 Piperidine-BasedDrugDiscovery
|
978 |
-
[132] KlinglerF,SobottaR.Processformanufacturingofchirallobeline,US200600114791;
|
979 |
-
2006.
|
980 |
-
[133] Klingler FD. Asymmetric hydrogenation of prochiral amino ketones to amino alcohols
|
981 |
-
forpharmaceuticaluse.AccChemRes2007;40(12):1367(cid:1)76.
|
982 |
-
[134] SchopfC,LehmannG.Synthesesandtransformationsofnaturalproductsunderphysio-
|
983 |
-
logical conditions (modelexperiments onthe questionofthebiogenesisofnaturalpro-
|
984 |
-
ducts). IV. Syntheses of tropinone, pseudopelletierine, lobelanine and related alkaloids
|
985 |
-
underphysiologicalconditions.JustLiebAnn1935;518:1(cid:1)37.
|
986 |
-
[135] Felpin F, Lebreton J. History, chemistry and biology of alkaloids from Lobelia inflate.
|
987 |
-
Tetrahedron2004;60(45):10127(cid:1)53.
|
988 |
-
[136] FelpinF,LebretonJ.Ahighlystereoselectiveasymmetricsynthesisof(-)-Lobelineand
|
989 |
-
(-)-Sedamine.JOrgChem2002;67(26):9192(cid:1)9.
|
990 |
-
[137] KlinglerFD.Developmentofefficienttechnicalprocessesfortheproductionofenantio-
|
991 |
-
pureaminoalcoholsinthepharmaceuticalindustry,SynthesisofLobeline,Lobelaneand
|
992 |
-
their Analogues. In: Blaser H, Federsel H, editors. A review, asymmetric catalysis on
|
993 |
-
industrialscale.2ndEditionWeinheim:Wiley;2010.p.171(cid:1)85.
|
994 |
-
[138] ZhengG,CrooksPA.Synthesisoflobeline,lobelaneandtheiranalogues.RevOrgPrep
|
995 |
-
ProceduresInt2015;47(5):317(cid:1)37.
|
996 |
-
[139] JeskeWP,FareedJ,HoppensteadtDA,LewisB,WalengaJM.Pharmacologyofargatro-
|
997 |
-
ban.ExpRevHematol2010;3(5):527(cid:1)39.
|
998 |
-
[140] McKeageK,PloskerGL.Argatroban.FromDrugs2001;61(4):515(cid:1)22.
|
999 |
-
[141] Kondo LM, Wittkowsky AK, Wiggins BS. Argatroban for prevention and treatment of
|
1000 |
-
thromboembolism in heparin-induced thrombocytopenia. Ann Pharmacother 2001;35
|
1001 |
-
(4):440(cid:1)51.
|
1002 |
-
[142] Jeske W, Walenga JM, Lewis BE, Fareed J. Pharmacology of argatroban. Exp Opin
|
1003 |
-
InvestDrugs1999;8(5):625(cid:1)54.
|
1004 |
-
[143] DhillonS.Argatroban.Areviewofitsuseinthemanagementofheparin-inducedthrom-
|
1005 |
-
bocytopenia.AmJCardiovascDrugs2009;9(4):261(cid:1)82.
|
1006 |
-
[144] BoggioLN,OzaVLM.Argatrobanuseinheparin-inducedthrombocytopenia.ExpOpin
|
1007 |
-
Pharmacother2008;9(11):1963(cid:1)7.
|
1008 |
-
[145] RiceL,HurstingMJ.Argatrobantherapyinheparin-inducedthrombocytopenia.ExpRev
|
1009 |
-
ClinPharmacol2008;1(3):357(cid:1)67.
|
1010 |
-
[146] Escolar G, Bozzo J, Maragall S. Argatroban: a direct thrombin inhibitor with reliable
|
1011 |
-
andpredictableanticoagulantactions.DrugsofToday2006;42(4):223(cid:1)36.
|
1012 |
-
[147] YehRW,JangI.Argatroban:update.AmHeartJ2006;151(6):1131(cid:1)8.
|
1013 |
-
[148] LewisBE,HurstingMJ.Argatrobantherapyinheparin-inducedthrombocytopenia.Fund
|
1014 |
-
ClinCardiol2004;47:437(cid:1)74.
|
1015 |
-
[149] FareedJ,JeskeWP.Small-moleculedirectantithrombins:argatroban.BestPracticeRes,
|
1016 |
-
ClinicalHaematol2004;17(1):127(cid:1)38.
|
1017 |
-
[150] WarkentinTE.Managementofheparin-inducedthrombocytopenia:acriticalcomparison
|
1018 |
-
oflepirudinandargatroban.ThrombRes2003;110(2(cid:1)3):73(cid:1)82.
|
1019 |
-
[151] Bambrah RK, Pham DC, Rana F. Argatroban in heparin-induced thrombocytopenia:
|
1020 |
-
rationaleforuseandplaceintherapy.TherapeutAdvChronicDisease2013;4(6):302(cid:1)4.
|
1021 |
-
[152] KathiresanS,ShiomuraJ,JangI,ArgatrobanJ.Thrombos.Thrombolys2000;13(1):41(cid:1)7.
|
1022 |
-
[153] Saugel B, Schmid RM, Huber W. Safety and efficacy of argatroban in the manage-
|
1023 |
-
ment of heparin-induced thrombocytopenia. Clin Med Insights: Blood Disorders
|
1024 |
-
2011;4:11(cid:1)19.
|
1025 |
-
2-Substitutedand1,2-DisubstitutedPiperidines Chapter | 3 125
|
1026 |
-
[154] CossyJ,BelottiDA.Shortsynthesisofargatrobanapotentselectivethrombininhibitor.
|
1027 |
-
BioorgMedChem,Lett2001;11(15):1989(cid:1)92.
|
1028 |
-
[155] Okamoto S, Hijikata A, Kikumoto R, Tamao Y, Ohkubo K, Tezuka T, et al. N2-
|
1029 |
-
Arylsulfonyl-1-argininamides and pharmaceutically acceptable salts, US 4258192;
|
1030 |
-
1981.
|
1031 |
-
[156] Kikumoto R, Tamao Y, Ohkubo K, Tezuka T, Tonomura S, Hijikata A, et al. α-(N-
|
1032 |
-
Arylsulfonyl-L-argininamides and pharmaceutical compositions containing these sub-
|
1033 |
-
stances,EP8746;1980.
|
1034 |
-
[157] CossyJ.Selectivemethodologiesforthesynthesisofbiologicallyactivepiperidiniccom-
|
1035 |
-
pounds.ChemRecord2005;5(2):70(cid:1)80.
|
1036 |
-
[158] Ermertcan AT, Ozturkcan S. Topical calcineurin inhibitors, pimecrolimus and tacroli-
|
1037 |
-
mus.AntiinflammAntiallergyAgentsMedChem2007;6(3):237(cid:1)43.
|
1038 |
-
[159] Bulusu MARC, Baumann K, Stuetz A. Chemistry of the immunomodulatory macrolide
|
1039 |
-
ascomycinandrelatedanalogues.ProgChemOrgNatProd2011;94:59(cid:1)126.
|
1040 |
-
[160] MollisonKW,FeyTA,GauvinDM,SheetsMP,SmithML,PongM,etal.Discoveryof
|
1041 |
-
ascomycin analogs with potent topical but weak systemic activity for treatment of
|
1042 |
-
inflammatoryskindiseases.CurrPharmDes1998;4(5):367(cid:1)79.
|
1043 |
-
[161] PaulC,GraeberM,StuetzA.Ascomycins:promisingagentsforthetreatmentofinflam-
|
1044 |
-
matoryskindiseases.ExpOpinInvestDrugs2000;9(1):69(cid:1)77.
|
1045 |
-
[162] Griffiths CEM. Ascomycin: an advance in the management of atopic dermatitis. Br J
|
1046 |
-
Dermatol2001;144(4):679(cid:1)81.
|
1047 |
-
[163] Hersperger R, Keller TH. Ascomycin derivatives and their use as immunosuppressive
|
1048 |
-
agents.DrugsFut2000;25(3):269(cid:1)77.
|
1049 |
-
[164] SimpsonD,NobleS. Tacrolimusointment:a reviewofitsusein atopicdermatitisand
|
1050 |
-
itsclinicalpotentialinotherinflammatoryskinconditions.Drugs2005;65(6):827(cid:1)58.
|
1051 |
-
[165] ZimmerR,BaumannK,SpernerH,SchulzG,HaidlE,GrassbergerMA.Syntheticmod-
|
1052 |
-
ifications of ascomycin. Part V. Access to novel ascomycin derivatives by replacement
|
1053 |
-
ofthecyclohexylvinylidenesubunit.CroatChemActa2005;78(1):17(cid:1)27.
|
1054 |
-
[166] ZimmerR,GrassbergerMA,BaumannK,HorvathA,SchulzG,HaidlE.Syntheticmod-
|
1055 |
-
ificationsofascomycin.II.Asimpleandefficientwaytomodifiediso-ascomycinderiva-
|
1056 |
-
tives.TetrahedronLett1995;36(42):7635(cid:1)8.
|
1057 |
-
[167] Ferraboschi P, Colombo D, De Mieri M, Grisenti P. First chemoenzymatic synthesis
|
1058 |
-
of immunomodulating macrolactam pimecrolimus. Tetrahedron Lett 2009;50
|
1059 |
-
(30):4384(cid:1)8.
|
1060 |
-
[168] VezinaC,KudelskiA,SehgalSN.Rapamycin(AY-22,989),anewantifungalantibiotic.
|
1061 |
-
I. Taxonomy of the producing streptomycete and isolation of the active principle. J
|
1062 |
-
Antibiot1975;28(10):721(cid:1)6.
|
1063 |
-
[169] KlawitterJ,NashanB,ChristiansU.Everolimusandsirolimusintransplantation-related
|
1064 |
-
butdifferent.ExpOpinDrugSafety2015;14(7):1055(cid:1)70.
|
1065 |
-
[170] MoesDJAR,GuchelaarH,deFijterJW.Everolimusandsirolimusinkidneytransplanta-
|
1066 |
-
tion.DrugDiscovToday2015;20(10):1243(cid:1)9.
|
1067 |
-
[171] AugustineJJ, Hricik DE. Experience witheverolimus,Transplant. Proc.,2004, 36 2S0,
|
1068 |
-
500S-503S.
|
1069 |
-
[172] WebsterAC, LeeVW,ChapmanJR,CraigJC.Targetofrapamycininhibitors(TOR-I;
|
1070 |
-
sirolimus and everolimus) for primary immunosuppression in kidney transplant recipi-
|
1071 |
-
ents.CochraneDatabaseSystRev2006;(2):CD004290.
|
1072 |
-
[173] Schulze M, Stock C, Zaccagnini M, Teber D, Rassweiler JJ. Temsirolimus. Recent
|
1073 |
-
ResultsCancerRes2014;201:393(cid:1)403."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|