Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ The dataset is structured as follows:
|
|
10 |
- **Phases**: Different phases for each task (e.g., Phase1, Phase2).
|
11 |
- **Types**: Training and testing data (e.g., train_x, train_y, test_x, test_y, train, test).
|
12 |
|
13 |
-
Each row in the dataset represents a
|
14 |
|
15 |
## Usage
|
16 |
|
@@ -32,8 +32,4 @@ if __name__ == '__main__':
|
|
32 |
for task, phase, type_, table in zip(dataset['task'], dataset['phase'], dataset['type'], dataset['data']):
|
33 |
table = pd.DataFrame.from_dict(eval(table, {'nan': np.nan}))
|
34 |
table_name = f"{task}_{phase}_{type_}"
|
35 |
-
data[table_name] = table
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
10 |
- **Phases**: Different phases for each task (e.g., Phase1, Phase2).
|
11 |
- **Types**: Training and testing data (e.g., train_x, train_y, test_x, test_y, train, test).
|
12 |
|
13 |
+
Each row in the dataset represents a file, with features or labels provided for prediction tasks.
|
14 |
|
15 |
## Usage
|
16 |
|
|
|
32 |
for task, phase, type_, table in zip(dataset['task'], dataset['phase'], dataset['type'], dataset['data']):
|
33 |
table = pd.DataFrame.from_dict(eval(table, {'nan': np.nan}))
|
34 |
table_name = f"{task}_{phase}_{type_}"
|
35 |
+
data[table_name] = table
|
|
|
|
|
|
|
|