from transformers import AutoModel | |
import numpy as np | |
from PIL import Image | |
import torch | |
import os | |
images = [ | |
"test/1.png", | |
"test/2.png", | |
] | |
def read_image_as_np_array(image_path): | |
with open(image_path, "rb") as file: | |
image = Image.open(file).convert("L").convert("RGB") | |
image = np.array(image) | |
return image | |
images = [read_image_as_np_array(image) for image in images] | |
model = AutoModel.from_pretrained( | |
"ragavsachdeva/magi", trust_remote_code=True).cuda() | |
# model = AutoModel.from_pretrained( | |
# "./magi", trust_remote_code=True).cuda() | |
with torch.no_grad(): | |
results = model.predict_detections_and_associations(images) | |
text_bboxes_for_all_images = [x["texts"] for x in results] | |
ocr_results = model.predict_ocr(images, text_bboxes_for_all_images) | |
for i in range(len(images)): | |
model.visualise_single_image_prediction( | |
images[i], results[i], filename=f"image_{i}.png") | |
model.generate_transcript_for_single_image( | |
results[i], ocr_results[i], filename=f"transcript_{i}.txt") | |