File size: 4,907 Bytes
61740cb
630cdf5
61740cb
 
 
 
f755e76
61740cb
 
 
630cdf5
 
 
f755e76
 
 
 
 
630cdf5
 
 
 
f755e76
630cdf5
 
61740cb
f755e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120d732
f755e76
120d732
 
 
 
 
f755e76
120d732
9fe8f32
120d732
f755e76
 
 
 
 
61740cb
 
 
 
630cdf5
61740cb
 
 
 
 
120d732
 
 
61740cb
f755e76
630cdf5
868a71f
630cdf5
 
 
 
f755e76
 
 
 
 
 
 
 
 
 
 
61740cb
 
 
 
61fd3f3
61740cb
f755e76
630cdf5
f755e76
 
 
 
 
 
630cdf5
61740cb
 
 
 
 
 
 
630cdf5
61740cb
 
 
 
6a58a50
 
 
61740cb
630cdf5
61740cb
 
 
 
630cdf5
61740cb
 
 
 
f755e76
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Dronescapes representations -- adds various loading/writing/image showing capabilities to dronescapes tasks"""
from __future__ import annotations
from pathlib import Path
import numpy as np
import torch as tr
import flow_vis
from skimage.color import rgb2hsv, hsv2rgb
from overrides import overrides
from matplotlib.cm import hot # pylint: disable=no-name-in-module
from .multitask_dataset import NpzRepresentation
from torch.nn import functional as F

class ColorRepresentation(NpzRepresentation):
    def __init__(self, name: str, n_channels: int):
        super().__init__(name)
        self._n_channels = n_channels

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path)
        return res.float() / 255

    @overrides
    def save_to_disk(self, data: tr.Tensor, path: Path):
        return super().save_to_disk((data * 255).byte(), path)

    @property
    @overrides
    def n_channels(self) -> int:
        return self._n_channels

class HSVRepresentation(ColorRepresentation):
    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        rgb = NpzRepresentation.load_from_disk(self, path)
        return tr.from_numpy(rgb2hsv(rgb)).float()

    @overrides
    def save_to_disk(self, data: tr.Tensor, path: Path):
        rgb = tr.from_numpy(hsv2rgb(data) * 255).byte()
        NpzRepresentation.save_to_disk(rgb, path)

class EdgesRepresentation(NpzRepresentation):
    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path).float()
        assert len(res.shape) == 3 and res.shape[-1] == 1
        return res

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        return (x.detach().repeat(1, 1, 3) * 255).cpu().numpy().astype(np.uint8)

    @property
    @overrides
    def n_channels(self) -> int:
        return 1

class DepthRepresentation(NpzRepresentation):
    """DepthRepresentation. Implements depth task-specific stuff, like hotmap."""
    def __init__(self, *args, min_depth: float, max_depth: float, **kwargs):
        super().__init__(*args, **kwargs)
        assert 0 <= min_depth < max_depth, (min_depth, max_depth)
        self.min_depth = min_depth
        self.max_depth = max_depth

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x = x.detach().clip(0, 1).squeeze().cpu().numpy()
        y: np.ndarray = hot(x)[..., 0:3] * 255
        return y.astype(np.uint8)

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path).squeeze().unsqueeze(-1)
        res = res.float().clip(self.min_depth, self.max_depth)
        res = (res - self.min_depth) / (self.max_depth - self.min_depth)
        return res

    @property
    @overrides
    def n_channels(self) -> int:
        return 1

class NormalsRepresentation(NpzRepresentation):
    @property
    @overrides
    def n_channels(self) -> int:
        return 3

class OpticalFlowRepresentation(NpzRepresentation):
    """OpticalFlowRepresentation. Implements depth task-specific stuff, like using flow_vis."""
    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        return flow_vis.flow_to_color(x.squeeze().nan_to_num(0).detach().cpu().numpy())

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        return super().load_from_disk(path).float()

    @property
    @overrides
    def n_channels(self) -> int:
        return 2

class SemanticRepresentation(NpzRepresentation):
    """SemanticRepresentation. Implements depth task-specific stuff, like using flow_vis."""
    def __init__(self, *args, classes: int | list[str], color_map: list[tuple[int, int, int]], **kwargs):
        super().__init__(*args, **kwargs)
        self.classes = list(range(classes)) if isinstance(classes, int) else classes
        self.n_classes = len(self.classes)
        self.color_map = color_map
        assert len(color_map) == self.n_classes and self.n_classes > 1, (color_map, self.n_classes)

    @overrides
    def load_from_disk(self, path: Path) -> tr.Tensor:
        res = super().load_from_disk(path)
        if len(res.shape) == 3:
            assert res.shape[-1] == self.n_classes, f"Expected {self.n_classes} (HxWxC), got {res.shape[-1]}"
            res = res.argmax(-1)
        assert len(res.shape) == 2, f"Only argmaxed data supported, got: {res.shape}"
        res = F.one_hot(res.long(), num_classes=self.n_classes).float()
        return res

    @overrides
    def plot_fn(self, x: tr.Tensor) -> np.ndarray:
        x = x.squeeze().nan_to_num(0).detach().argmax(-1).cpu().numpy()
        new_images = np.zeros((*x.shape, 3), dtype=np.uint8)
        for i in range(self.n_classes):
            new_images[x == i] = self.color_map[i]
        return new_images

    @property
    @overrides
    def n_channels(self) -> int:
        return self.n_classes