File size: 22,659 Bytes
92142d8
 
 
5e6866e
92142d8
f227ee1
f5a8641
92142d8
 
b77c177
92142d8
 
 
 
0094b94
92142d8
85a37ac
 
 
 
5e6866e
92142d8
630cdf5
 
5e6866e
92142d8
 
 
 
 
 
 
0094b94
 
 
 
 
 
 
92142d8
0094b94
 
 
 
 
 
 
92142d8
 
 
 
 
 
 
 
 
 
0094b94
f227ee1
0094b94
22a896e
0094b94
 
 
 
 
 
cbb2b8a
1ab474b
 
f227ee1
92142d8
 
 
f227ee1
0094b94
 
92142d8
 
22a896e
0094b94
92142d8
0094b94
 
22a896e
 
 
 
 
 
 
 
 
 
 
 
92142d8
 
2cc2d03
0094b94
 
 
 
 
 
6d95ae3
710deb7
1ab474b
92142d8
 
0094b94
 
868825d
0094b94
2cc2d03
 
 
6d95ae3
 
 
2cc2d03
92142d8
 
 
 
 
0094b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92142d8
 
 
 
 
 
 
0094b94
 
 
 
 
 
 
 
 
 
92142d8
 
 
 
 
1ab474b
92142d8
1ab474b
92142d8
293440d
92142d8
 
0094b94
 
 
 
 
92142d8
 
868825d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92142d8
 
 
 
f227ee1
92142d8
 
 
 
89b2653
 
 
 
 
 
 
92142d8
 
 
f227ee1
f755e76
58c45ab
f227ee1
 
58c45ab
 
3a808fd
 
 
58c45ab
 
 
 
 
92142d8
58c45ab
 
7368892
58c45ab
 
 
 
 
 
 
3a808fd
58c45ab
 
 
 
 
 
92142d8
0094b94
5e6866e
 
0094b94
5e6866e
0094b94
384ca1b
5e6866e
 
 
 
0094b94
 
5e6866e
 
 
0094b94
 
 
 
 
 
 
 
 
 
 
 
 
384ca1b
 
5e6866e
384ca1b
 
 
 
 
5e6866e
0094b94
384ca1b
6d95ae3
0094b94
 
384ca1b
0094b94
 
 
384ca1b
0094b94
 
 
 
 
 
 
 
384ca1b
22a896e
0094b94
 
 
 
 
f227ee1
 
0094b94
 
190e92f
 
 
0094b94
5e6866e
 
92142d8
 
 
 
c5302ea
92142d8
 
 
 
 
c5302ea
 
92142d8
22a896e
0094b94
 
 
6d95ae3
22a896e
 
 
 
 
 
92142d8
 
 
 
 
 
 
1ab474b
92142d8
1ab474b
0094b94
92142d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd19171
92142d8
 
 
dd19171
92142d8
 
 
 
dd19171
92142d8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#!/usr/bin/env python3
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader."""
from __future__ import annotations
import os
from pathlib import Path
from typing import Dict, List, Tuple, Iterable
from argparse import ArgumentParser
from pprint import pprint
from natsort import natsorted
from loggez import loggez_logger as logger
import torch as tr
import numpy as np
from torch.utils.data import Dataset, DataLoader
from lovely_tensors import monkey_patch
from tqdm import trange

try:
    from npz_representation import NpzRepresentation
except ImportError:
    from .npz_representation import NpzRepresentation

monkey_patch()
BuildDatasetTuple = Tuple[Dict[str, List[Path]], List[str]]
MultiTaskItem = Tuple[Dict[str, tr.Tensor], str, List[str]] # [{task: data}, stem(name) | list[stem(name)], [tasks]]
TaskStatistics = Tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor] # (min, max, mean, std)

class MultiTaskDataset(Dataset):
    """
    MultiTaskDataset implementation. Reads data from npz files and returns them as a dict.
    Parameters:
    - path: Path to the directory containing the npz files.
    - task_names: List of tasks that are present in the dataset. If set to None, will infer from the files on disk.
    - task_types: A dictionary of form {task_name: task_type} for the reader to call to read from disk, plot etc.
    - normalization: The normalization type used in __getitem__. Valid options are:
      - None: Reads the data as-is using task.read_from_disk(path)
      - 'min_max': Calls task.normalize(task.read_from_disk(path), mins[task], maxs[task])
      - 'standardization': Calls task.standardize(task.read_from_disk(path), means[task], stds[task])
      If normalization is not 'none', then task-level statistics will be computed. Environmental variable
      STATS_PBAR=0/1 enables tqdm during statistics computation.
    - handle_missing_data: Modes to handle missing data. Valid options are:
      - 'drop': Drop the data point if any of the representations is missing.
      - 'fill_{none,zero,nan}': Fill the missing data with Nones, zeros or NaNs.
    - files_suffix: What suffix to look for when creating the dataset. Valid values: 'npy' or 'npz'.
    - cache_task_stats: If set to True, the statistics will be cached at '{path}/.task_statistics.npz'. Can be enabled
    using the environmental variable STATS_CACHE=1. Defaults to False.
    - batch_size_stats: Controls the batch size during statistics computation. Can be enabled by environmental variable
    STATS_BATCH_SIZE. Defaults to 1.

    Expected directory structure:
    path/
    - task_1/0.npz, ..., N.npz
    - ...
    - task_n/0.npz, ..., N.npz

    Names can be in a different format (i.e. 2022-01-01.npz), but must be consistent and equal across all tasks.
    """

    def __init__(self, path: Path,
                 task_names: list[str],
                 task_types: dict[str, type],
                 normalization: str | None | dict[str],
                 handle_missing_data: str = "fill_none",
                 files_suffix: str = "npz",
                 cache_task_stats: bool = (os.getenv("STATS_CACHE", "0") == "1"),
                 batch_size_stats: int = int(os.getenv("STATS_BATCH_SIZE", "1")),
                 statistics: dict[str, TaskStatistics] | None = None,
    ):
        assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
        assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
            f"Invalid handle_missing_data mode: {handle_missing_data}"
        assert isinstance(task_names, Iterable), type(task_names)
        self.path = Path(path).absolute()
        self.handle_missing_data = handle_missing_data
        self.suffix = files_suffix
        self.files_per_repr, self.file_names = self._build_dataset(task_types, task_names) # + handle_missing_data
        self.cache_task_stats = cache_task_stats
        self.batch_size_stats = batch_size_stats

        assert all(isinstance(x, str) for x in task_names), tuple(zip(task_names, (type(x) for x in task_names)))
        assert (diff := set(self.files_per_repr).difference(task_names)) == set(), f"Not all tasks in files: {diff}"
        self.task_types = {k: v for k, v in task_types.items() if k in task_names} # all task_types must be provided!
        self.task_names = sorted(task_names)
        logger.info(f"Tasks used in this dataset: {self.task_names}")

        if normalization is not None:
            if isinstance(normalization, str):
                logger.info(f"Normalization provided as a string ({normalization}). Setting all tasks to this")
                normalization: dict[str, str] = {task: normalization for task in self.task_names}
            if "*" in normalization.keys(): # for the lazy, we can put {"*": "standardization", "depth": "min_max"}
                value = normalization.pop("*")
                for missing_task in set(self.task_names).difference(normalization.keys()):
                    normalization[missing_task] = value
            assert all(n in ("min_max", "standardization") for n in normalization.values()), normalization
            assert all(k in task_names for k in normalization.keys()), set(normalization).difference(task_names)
        self.normalization: dict[str, str] | None = normalization

        self._data_shape: tuple[int, ...] | None = None
        self._tasks: list[NpzRepresentation] | None = None
        self._default_vals: dict[str, tr.Tensor] | None = None
        if statistics is not None:
            self._statistics = self._load_external_statistics(statistics)
        else:
            self._statistics = None if normalization is None else self._compute_statistics()
        if self._statistics is not None:
            for task_name, task in self.name_to_task.items():
                if not task.is_classification:
                    task.set_normalization(self.normalization[task_name], self._statistics[task_name])

    # Public methods and properties

    @property
    def name_to_task(self) -> dict[str, NpzRepresentation]:
        return {task.name: task for task in self.tasks}

    @property
    def default_vals(self) -> dict[str, tr.Tensor]:
        """default values for __getitem__ if item is not on disk but we retrieve a full batch anyway"""
        _default_val = float("nan") if self.handle_missing_data == "fill_nan" else 0
        return {task: None if self.handle_missing_data == "fill_none" else tr.full(self.data_shape[task], _default_val)
                for task in self.task_names}

    @property
    def data_shape(self) -> dict[str, tuple[int, ...]]:
        """Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each."""
        first_npz = {task: [_v for _v in files if _v is not None][0] for task, files in self.files_per_repr.items()}
        data_shape = {task: self.name_to_task[task].load_from_disk(first_npz[task]).shape for task in self.task_names}
        return {task: tuple(shape) for task, shape in data_shape.items()}

    @property
    def mins(self) -> dict[str, tr.Tensor]:
        """returns a dict {task: mins[task]} for all the tasks if self.statistics exists"""
        assert self.normalization is not None, "No statistics for normalization is None"
        return {k: v[0] for k, v in self._statistics.items() if k in self.task_names}

    @property
    def maxs(self) -> dict[str, tr.Tensor]:
        """returns a dict {task: mins[task]} for all the tasks if self.statistics exists"""
        assert self.normalization is not None, "No statistics for normalization is None"
        return {k: v[1] for k, v in self._statistics.items() if k in self.task_names}

    @property
    def means(self) -> dict[str, tr.Tensor]:
        """returns a dict {task: mins[task]} for all the tasks if self.statistics exists"""
        assert self.normalization is not None, "No statistics for normalization is None"
        return {k: v[2] for k, v in self._statistics.items() if k in self.task_names}

    @property
    def stds(self) -> dict[str, tr.Tensor]:
        """returns a dict {task: mins[task]} for all the tasks if self.statistics exists"""
        assert self.normalization is not None, "No statistics for normalization is None"
        return {k: v[3] for k, v in self._statistics.items() if k in self.task_names}

    @property
    def tasks(self) -> list[NpzRepresentation]:
        """
        Returns a list of instantiated tasks in the same order as self.task_names. Overwrite this to add
        new tasks and semantics (i.e. plot_fn or doing some preprocessing after loading from disk in some tasks.
        """
        if self._tasks is None:
            self._tasks = []
            for task_name in self.task_names:
                t = self.task_types[task_name]
                try:
                    t = t(task_name) # hack for not isinstance(self.task_types, NpzRepresentation) but callable
                except Exception:
                    pass
                self._tasks.append(t)
            assert all(t.name == t_n for t, t_n in zip(self._tasks, self.task_names)), (self.task_names, self._tasks)
        return self._tasks

    def collate_fn(self, items: list[MultiTaskItem]) -> MultiTaskItem:
        """
        given a list of items (i.e. from a reader[n:n+k] call), return the item batched on 1st dimension.
        Nones (missing data points) are turned into nans as per the data shape of that dim.
        """
        assert all(item[2] == self.task_names for item in items), ([item[2] for item in items], self.task_names)
        items_name = [item[1] for item in items]
        res = {k: tr.zeros(len(items), *self.data_shape[k]).float() for k in self.task_names} # float32 always
        for i in range(len(items)):
            for k in self.task_names:
                try:
                    res[k][i][:] = items[i][0][k] if items[i][0][k] is not None else float("nan")
                except Exception as e:
                    print(k, items)
                    raise e
        return res, items_name, self.task_names

    def add_task(self, task: NpzRepresentation):
        """Safely adds a task to this reader. Most likely can be optimized"""
        logger.debug(f"Adding a new task: '{task.name}'")
        assert task.name not in self.task_names, f"Task '{task.name}' already exists: {self.task_names}"
        self.task_names = sorted([*self.task_names, task.name])
        self.task_types[task.name] = task
        self._tasks = None
        self.files_per_repr, self.file_names = self._build_dataset(self.task_types, self.task_names)

    def remove_task(self, task_name: str):
        """Safely removes a task from this reader"""
        logger.debug(f"Removing a task: '{task_name}'")
        assert task_name in self.task_names, f"Task '{task_name}' doesn't exist: {self.task_names}"
        self.task_names = sorted(name for name in self.task_names if name != task_name)
        del self.task_types[task_name]
        self._tasks = None
        self.files_per_repr, self.file_names = self._build_dataset(self.task_types, self.task_names)

    # Private methods

    def _get_all_npz_files(self) -> dict[str, list[Path]]:
        """returns a dict of form: {"rgb": ["0.npz", "1.npz", ..., "N.npz"]}"""
        assert self.suffix == "npz", f"Only npz supported right now (though trivial to update): {self.suffix}"
        in_files = {}
        all_repr_dirs: list[str] = [x.name for x in self.path.iterdir() if x.is_dir()]
        for repr_dir_name in all_repr_dirs:
            dir_name = self.path / repr_dir_name
            if all(f.is_dir() for f in dir_name.iterdir()): # dataset is stored as repr/part_x/0.npz, ..., part_k/n.npz
                all_files = []
                for part in dir_name.iterdir():
                    all_files.extend(part.glob(f"*.{self.suffix}"))
            else: # dataset is stored as repr/0.npz, ..., repr/n.npz
                all_files = dir_name.glob(f"*.{self.suffix}")
            in_files[repr_dir_name] = natsorted(all_files, key=lambda x: x.name) # important: use natsorted() here
        assert not any(len(x) == 0 for x in in_files.values()), f"{ [k for k, v in in_files.items() if len(v) == 0] }"
        return in_files

    def _build_dataset(self, task_types: dict[str, NpzRepresentation], task_names: list[str]) -> BuildDatasetTuple:
        logger.debug(f"Building dataset from: '{self.path}'")
        all_npz_files = self._get_all_npz_files()
        all_files: dict[str, dict[str, Path]] = {k: {_v.name: _v for _v in v} for k, v in all_npz_files.items()}

        relevant_tasks_for_files = set() # hsv requires only rgb, so we look at dependencies later on
        for task_name in task_names:
            relevant_tasks_for_files.update(task_types[task_name].dep_names)
        if (diff := relevant_tasks_for_files.difference(all_files)) != set():
            raise FileNotFoundError(f"Missing files for {diff}.\nFound on disk: {[*all_files]}")
        names_to_tasks: dict[str, list[str]] = {} # {name: [task]}
        for task_name in relevant_tasks_for_files: # just the relevant tasks
            for path_name in all_files[task_name].keys():
                names_to_tasks.setdefault(path_name, [])
                names_to_tasks[path_name].append(task_name)

        if self.handle_missing_data == "drop":
            b4 = len(names_to_tasks)
            names_to_tasks = {k: v for k, v in names_to_tasks.items() if len(v) == len(relevant_tasks_for_files)}
            logger.debug(f"Dropped {b4 - len(names_to_tasks)} files not in all tasks")
        all_names: list[str] = natsorted(names_to_tasks.keys())
        logger.info(f"Total files: {len(names_to_tasks)} per task across {len(task_names)} tasks")

        files_per_task: dict[str, list[str | None] | list[list[str] | None]] = {task: [] for task in task_names}
        for name in all_names:
            for task in task_names:
                all_deps_exist = set(deps := task_types[task].dep_names).issubset(names_to_tasks[name])
                if not all_deps_exist:
                    files_per_task[task].append(None) # if any of the deps don't exist for this task, skip it.
                else:
                    paths = [all_files[dep][name] for dep in deps]
                    files_per_task[task].append(paths if len(deps) > 1 else paths[0])
        return files_per_task, all_names

    def _compute_statistics(self) -> dict[str, TaskStatistics]:
        cache_path = self.path / f".task_statistics.npz"
        res: dict[str, TaskStatistics] = {}
        if self.cache_task_stats and cache_path.exists():
            res = np.load(cache_path, allow_pickle=True)["arr_0"].item()
            logger.info(f"Loaded task statistics: { {k: tuple(v[0].shape) for k, v in res.items()} } from {cache_path}")
        missing_tasks = [t for t in set(self.task_names).difference(res) if not self.name_to_task[t].is_classification]
        if len(missing_tasks) == 0:
            return res
        logger.info(f"Computing global task statistics (dataset len {len(self)}) for {missing_tasks}")
        res = {**res, **self._compute_channel_level_stats(missing_tasks)}
        logger.info(f"Computed task statistics: { {k: tuple(v[0].shape) for k, v in res.items()} }")
        np.savez(cache_path, res)
        return res

    def _compute_channel_level_stats(self, missing_tasks: list[str]) -> dict[str, TaskStatistics]:
        # kinda based on: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
        def update(counts: tr.Tensor, counts_delta: float,  mean: tr.Tensor, M2: tr.Tensor,
                   new_value: tr.Tensor) -> tuple[tr.Tensor, tr.Tensor, tr.Tensor]:
            new_count = counts + counts_delta
            batch_mean = new_value.nanmean(0)
            batch_var = ((new_value - batch_mean) ** 2).nansum(0)
            delta = batch_mean - mean
            new_count_no_zero = new_count + (new_count == 0) # add 1 (True) in case new_count is 0 to not divide by 0
            new_mean = mean + delta * counts_delta / new_count_no_zero
            new_M2 = M2 + batch_var + delta**2 * counts * counts_delta / new_count_no_zero
            assert not new_mean.isnan().any() and not new_M2.isnan().any(), (mean, new_mean, counts, counts_delta)
            return new_count, new_mean, new_M2

        assert not any(mt := [self.name_to_task[t].is_classification for t in missing_tasks]), mt
        assert len(missing_tasks) > 0, missing_tasks
        ch = {k: v[-1] if len(v) == 3 else 1 for k, v in self.data_shape.items()}
        counts = {task_name: tr.zeros(ch[task_name]).long() for task_name in missing_tasks}
        mins = {task_name: tr.zeros(ch[task_name]).type(tr.float64) + 10**10 for task_name in missing_tasks}
        maxs = {task_name: tr.zeros(ch[task_name]).type(tr.float64) - 10**10 for task_name in missing_tasks}
        means_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks}
        M2s_vec = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks}

        old_names, old_normalization = self.task_names, self.normalization
        self.task_names, self.normalization = missing_tasks, None # for self[ix]
        res = {}
        BS = min(len(self), self.batch_size_stats)
        n = (len(self) // BS) + (len(self) % BS != 0)

        logger.debug(f"Global task statistics. Batch size: {BS}. N iterations: {n}.")
        for ix in trange(n, disable=os.getenv("STATS_PBAR", "0") == "0", desc="Computing stats"):
            item = self[ix * BS: min(len(self), (ix + 1) * BS)][0]
            for task in missing_tasks:
                item_flat_ch = item[task].reshape(-1, ch[task])
                item_no_nan = item_flat_ch.nan_to_num(0).type(tr.float64)
                mins[task] = tr.minimum(mins[task], item_no_nan.min(0)[0])
                maxs[task] = tr.maximum(maxs[task], item_no_nan.max(0)[0])
                counts_delta = (item_flat_ch == item_flat_ch).long().sum(0)
                counts[task], means_vec[task], M2s_vec[task] = \
                    update(counts[task], counts_delta, means_vec[task], M2s_vec[task], item_no_nan)

        for task in missing_tasks:
            res[task] = (mins[task], maxs[task], means_vec[task], (M2s_vec[task] / counts[task]).sqrt())
            assert not any(x[0].isnan().any() for x in res[task]), (task, res[task])
        self.task_names, self.normalization = old_names, old_normalization
        return res

    def _load_external_statistics(self, statistics: dict[str, TaskStatistics | list]) -> dict[str, TaskStatistics]:
        tasks_no_classif = [t for t in set(self.task_names) if not self.name_to_task[t].is_classification]
        assert (diff := set(tasks_no_classif).difference(statistics)) == set(), f"Missing tasks: {diff}"
        res: dict[str, TaskStatistics] = {}
        for k, v in statistics.items():
            if k in self.task_names:
                res[k] = tuple(tr.Tensor(x) for x in v)
                assert all(_stat.shape == (nd := (self.name_to_task[k].n_channels, )) for _stat in res[k]), (res[k], nd)
        logger.info(f"External statistics provided: { {k: tuple(v[0].shape) for k, v in res.items()} }")
        return res

    # Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)

    def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem:
        """Read the data all the desired nodes"""
        assert isinstance(index, (int, slice, list, tuple, str)), type(index)
        if isinstance(index, slice):
            assert index.start is not None and index.stop is not None and index.step is None, "Only reader[l:r] allowed"
            index = list(range(index.stop)[index])
        if isinstance(index, (list, tuple)):
            return self.collate_fn([self.__getitem__(ix) for ix in index])
        if isinstance(index, str):
            return self.__getitem__(self.file_names.index(index))

        res: dict[str, tr.Tensor] = {}
        for task_name in self.task_names:
            task = [t for t in self.tasks if t.name == task_name][0]
            file_path = self.files_per_repr[task_name][index]
            res[task_name] = self.default_vals[task_name] if file_path is None else task.load_from_disk(file_path)
            if not task.is_classification:
                if self.normalization is not None and self.normalization[task_name] == "min_max":
                    res[task_name] = task.normalize(res[task_name])
                if self.normalization is not None and self.normalization[task_name] == "standardization":
                    res[task_name] = task.standardize(res[task_name])
        return (res, self.file_names[index], self.task_names)

    def __len__(self) -> int:
        return len(self.files_per_repr[self.task_names[0]]) # all of them have the same number (filled with None or not)

    def __str__(self):
        f_str = f"[{str(type(self)).rsplit('.', maxsplit=1)[-1][0:-2]}]"
        f_str += f"\n - Path: '{self.path}'"
        f_str += f"\n - Tasks ({len(self.tasks)}): {self.tasks}"
        f_str += f"\n - Length: {len(self)}"
        f_str += f"\n - Handle missing data mode: '{self.handle_missing_data}'"
        f_str += f"\n - Normalization: '{self.normalization}'"
        return f_str

    def __repr__(self):
        return str(self)

def main():
    """main fn"""
    parser = ArgumentParser()
    parser.add_argument("dataset_path", type=Path)
    parser.add_argument("--handle_missing_data", choices=("drop", "fill_none"), default="fill_none")
    args = parser.parse_args()

    reader = MultiTaskDataset(args.dataset_path, task_names=None, handle_missing_data=args.handle_missing_data)
    print(reader)
    print(f"Shape: {reader.data_shape}")

    rand_ix = np.random.randint(len(reader))
    data, name, repr_names = reader[rand_ix] # get a random single data point
    print(f"Name: {name}. Nodes: {repr_names}")
    pprint({k: v for k, v in data.items()})

    data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch
    print(f"Name: {name}. Nodes: {repr_names}")
    pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically

    loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True)
    data, name, repr_names = next(iter(loader)) # get a random batch using torch DataLoader
    print(f"Name: {name}. Nodes: {repr_names}")
    pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically

if __name__ == "__main__":
    main()