dronescapes / dronescapes_reader /multitask_dataset.py
Meehai's picture
small changes to dronescapes_reader. Added initial support for norm/std
5e6866e
raw
history blame
15.2 kB
#!/usr/bin/env python3
"""MultiTask Dataset module compatible with torch.utils.data.Dataset & DataLoader."""
from __future__ import annotations
import os
from pathlib import Path
from typing import Dict, List, Tuple
from argparse import ArgumentParser
from pprint import pprint
from natsort import natsorted
from loggez import loggez_logger as logger
import torch as tr
import numpy as np
from torch.utils.data import Dataset, DataLoader
from lovely_tensors import monkey_patch
from npz_representation import NpzRepresentation
monkey_patch()
BuildDatasetTuple = Tuple[Dict[str, List[Path]], List[str]]
MultiTaskItem = Tuple[Dict[str, tr.Tensor], str, List[str]] # [{task: data}, stem(name) | list[stem(name)], [tasks]]
TaskStatistics = Tuple[tr.Tensor, tr.Tensor, tr.Tensor, tr.Tensor] # (min, max, mean, std)
class MultiTaskDataset(Dataset):
"""
MultiTaskDataset implementation. Reads data from npz files and returns them as a dict.
Parameters:
- path: Path to the directory containing the npz files.
- task_names: List of tasks that are present in the dataset. If set to None, will infer from the files on disk.
- handle_missing_data: Modes to handle missing data. Valid options are:
- drop: Drop the data point if any of the representations is missing.
- fill_none: Fill the missing data with Nones.
Expected directory structure:
path/
- task_1/0.npz, ..., N.npz
- ...
- task_n/0.npz, ..., N.npz
Names can be in a different format (i.e. 2022-01-01.npz), but must be consistent and equal across all tasks.
"""
def __init__(self, path: Path, task_names: list[str] | None = None, handle_missing_data: str = "fill_none",
files_suffix: str = "npz", task_types: dict[str, type] | None = None,
files_per_repr_overwrites: dict[str, str] | None = None,
compute_statistics: bool = False):
assert Path(path).exists(), f"Provided path '{path}' doesn't exist!"
assert handle_missing_data in ("drop", "fill_none", "fill_zero", "fill_nan"), \
f"Invalid handle_missing_data mode: {handle_missing_data}"
assert files_suffix == "npz", "Only npz supported right now (though trivial to update)"
self.path = Path(path).absolute()
self.handle_missing_data = handle_missing_data
self.suffix = files_suffix
self.files_per_repr_overwrites = files_per_repr_overwrites
self.all_files_per_repr = self._get_all_npz_files()
self.files_per_repr, self.file_names = self._build_dataset() # these are filtered by 'drop' or 'fill_none' logic
if task_types is None:
logger.debug("No explicit task types. Defaulting all of them to NpzRepresentation.")
task_types = {}
if task_names is None:
task_names = list(self.files_per_repr.keys())
logger.debug(f"No explicit tasks provided. Using all of them as read from the paths ({len(task_names)}).")
assert all(task in self.files_per_repr for task in task_names), (task_names, self.files_per_repr.keys())
self.task_types = {k: task_types.get(k, NpzRepresentation) for k in task_names}
assert all(isinstance(x, str) for x in task_names), tuple(zip(task_names, (type(x) for x in task_names)))
self.task_names = sorted(task_names)
self._data_shape: tuple[int, ...] | None = None
self._tasks: list[NpzRepresentation] | None = None
self.name_to_task = {task.name: task for task in self.tasks}
logger.info(f"Tasks used in this dataset: {self.task_names}")
self._default_vals: dict[str, tr.Tensor] | None = None
self.statistics = None if compute_statistics is False else self._compute_statistics()
# Public methods and properties
@property
def default_vals(self) -> dict[str, tr.Tensor]:
"""default values for __getitem__ if item is not on disk but we retrieve a full batch anyway"""
if self._default_vals is None:
_default_val = float("nan") if self.handle_missing_data == "fill_nan" else 0
self._default_vals = {task: None if self.handle_missing_data == "fill_none" else
tr.full(self.data_shape[task], _default_val) for task in self.task_names}
return self._default_vals
@property
def data_shape(self) -> dict[str, tuple[int, ...]]:
"""Returns a {task: shape_tuple} for all representations. At least one npz file must exist for each."""
first_npz = {task: [_v for _v in files if _v is not None][0] for task, files in self.files_per_repr.items()}
data_shape = {task: self.name_to_task[task].load_from_disk(first_npz[task]).shape for task in self.task_names}
return data_shape
@property
def tasks(self) -> list[NpzRepresentation]:
"""
Returns a list of instantiated tasks in the same order as self.task_names. Overwrite this to add
new tasks and semantics (i.e. plot_fn or doing some preprocessing after loading from disk in some tasks.
"""
if self._tasks is not None:
return self._tasks
self._tasks = []
for task_name in self.task_names:
t = self.task_types[task_name]
try:
t = t(task_name) # hack for not isinstance(self.task_types, NpzRepresentation) but callable
except Exception:
pass
self._tasks.append(t)
assert all(t.name == t_n for t, t_n in zip(self._tasks, self.task_names)), (self.task_names, self._tasks)
return self._tasks
def collate_fn(self, items: list[MultiTaskItem]) -> MultiTaskItem:
"""
given a list of items (i.e. from a reader[n:n+k] call), return the item batched on 1st dimension.
Nones (missing data points) are turned into nans as per the data shape of that dim.
"""
assert all(item[2] == self.task_names for item in items), ([item[2] for item in items], self.task_names)
items_name = [item[1] for item in items]
res = {k: tr.zeros(len(items), *self.data_shape[k]).float() for k in self.task_names} # float32 always
for i in range(len(items)):
for k in self.task_names:
res[k][i][:] = items[i][0][k] if items[i][0][k] is not None else float("nan")
return res, items_name, self.task_names
# Private methods
def _get_all_npz_files(self) -> dict[str, list[Path]]:
"""returns a dict of form: {"rgb": ["0.npz", "1.npz", ..., "N.npz"]}"""
in_files = {}
all_repr_dirs: list[str] = [x.name for x in self.path.iterdir() if x.is_dir()]
for repr_dir_name in all_repr_dirs:
dir_name = self.path / repr_dir_name
if all(f.is_dir() for f in dir_name.iterdir()): # dataset is stored as repr/part_x/0.npz, ..., part_k/n.npz
all_files = []
for part in dir_name.iterdir():
all_files.extend(part.glob(f"*.{self.suffix}"))
else: # dataset is stored as repr/0.npz, ..., repr/n.npz
all_files = dir_name.glob(f"*.{self.suffix}")
in_files[repr_dir_name] = natsorted(all_files, key=lambda x: x.name) # important: use natsorted() here
assert not any(len(x) == 0 for x in in_files.values()), f"{ [k for k, v in in_files.items() if len(v) == 0] }"
return in_files
def _build_dataset(self) -> BuildDatasetTuple:
logger.debug(f"Building dataset from: '{self.path}'")
if self.handle_missing_data == "drop":
files_per_repr, common = self._build_dataset_drop_missing()
else:
files_per_repr, common = self._build_dataset_fill_missing()
if self.files_per_repr_overwrites is not None: # here we match for example 'hsv' to read also from 'rgb' dir
for left, right in self.files_per_repr_overwrites.items():
if right not in (fpr := files_per_repr):
logger.info(f"Overwrite: {left} => {right} provided, but {right} is not in {fpr.keys()}")
continue
assert left not in fpr.keys(), f"Overwrite: {left} => {right}. {left} already exists in {fpr.keys()}"
files_per_repr[left] = files_per_repr[right]
return files_per_repr, common
def _build_dataset_drop_missing(self) -> BuildDatasetTuple:
in_files = self.all_files_per_repr
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()} # {node: {name: path}}
common = set(x.name for x in next(iter(in_files.values())))
for node in (nodes := in_files.keys()):
common = common.intersection([f.name for f in in_files[node]])
assert len(common) > 0, f"Node '{node}' made the intersection null"
common = natsorted(list(common))
logger.info(f"Found {len(common)} data points for each node ({len(nodes)} nodes).")
files_per_repr = {node: [name_to_node_path[node][x] for x in common] for node in nodes}
assert len(files_per_repr) > 0
return files_per_repr, common
def _build_dataset_fill_missing(self) -> BuildDatasetTuple:
in_files = self.all_files_per_repr
name_to_node_path = {k: {_v.name: _v for _v in v} for k, v in in_files.items()}
all_files = set(x.name for x in next(iter(in_files.values())))
nodes = in_files.keys()
for node in (nodes := in_files.keys()):
all_files = all_files.union([f.name for f in in_files[node]])
all_files = natsorted(list(all_files))
logger.info(f"Found {len(all_files)} data points as union of all nodes' data ({len(nodes)} nodes).")
files_per_repr = {node: [] for node in nodes}
for node in nodes:
for file_name in all_files:
file_path = name_to_node_path[node].get(file_name, None)
files_per_repr[node].append(file_path)
assert len(files_per_repr) > 0
return files_per_repr, all_files
def _compute_statistics(self) -> dict[str, tr.Tensor]:
cache_path = self.path / f".task_statistics.npz"
res: dict[str, TaskStatistics] = {}
if os.getenv("CACHE_IMG_STATS", "0") == "1" and cache_path.exists():
res = np.load(cache_path, allow_pickle=True)["arr_0"].item()
logger.info(f"Loaded task statistics: { {k: v.shape for k, v in res.items()} }")
missing_tasks = list(set(self.task_names).difference(res.keys()))
if len(missing_tasks) == 0:
return res
logger.info(f"Computing global task statistics (dataset len {len(self)}) for {missing_tasks}")
old_tasks = self.tasks
self._tasks = [t for t in self.tasks if t.name in missing_tasks]
res = {**res, **self._compute_channel_level_stats(missing_tasks)}
self._tasks = old_tasks
logger.info(f"Computed task statistics: { {k: v[0].shape for k, v in res.items()} }")
if os.getenv("CACHE_IMG_STATS", "0") == "1":
np.savez(cache_path, res)
return res
def _compute_channel_level_stats(self, missing_tasks: list[str]) -> dict[str, TaskStatistics]:
ch = {k: v[-1] if len(v) == 3 else 1 for k, v in self.data_shape.items()}
sums = {task_name: tr.zeros(ch[task_name]).type(tr.float64) for task_name in missing_tasks}
counts = {task_name: tr.zeros(ch[task_name]).long() for task_name in missing_tasks}
mins = {task_name: tr.zeros(ch[task_name]).type(tr.float64) - 1<<31 for task_name in missing_tasks}
maxs = {task_name: tr.zeros(ch[task_name]).type(tr.float64) + 1<<31 for task_name in missing_tasks}
for ix in range(len(self)):
item = self.base_dataset[ix][0]
for task in missing_tasks:
item_flat_ch = item[task].reshape(-1, self.ch[task])
sums[task] += item_flat_ch.nan_to_num(0).type(tr.float64).sum(0)
counts[task] += (item_flat_ch == item_flat_ch).long().sum(0)
res_ch = {k: (sums[k] / counts[k]).nan_to_num(0).float() for k in missing_tasks}
res = {k: v.reshape(-1, 1, 1).repeat(1, self.h, self.w) for k, v in res_ch.items()}
return res
# Python magic methods (pretty printing the reader object, reader[0], len(reader) etc.)
def __getitem__(self, index: int | slice | list[int] | tuple) -> MultiTaskItem:
"""Read the data all the desired nodes"""
assert isinstance(index, (int, slice, list, tuple, str)), type(index)
if isinstance(index, slice):
assert index.start is not None and index.stop is not None and index.step is None, "Only reader[l:r] allowed"
index = list(range(index.stop)[index])
if isinstance(index, (list, tuple)):
return self.collate_fn([self.__getitem__(ix) for ix in index])
if isinstance(index, str):
return self.__getitem__(self.file_names.index(index))
res = {}
item_name = self.file_names[index]
for task in self.tasks:
file_path = self.files_per_repr[task.name][index]
file_path = None if file_path is None or not (fpr := file_path.resolve()).exists() else fpr
res[task.name] = task.load_from_disk(file_path) if file_path is not None else self.default_vals[task.name]
return (res, item_name, self.task_names)
def __len__(self) -> int:
return len(self.files_per_repr[self.task_names[0]]) # all of them have the same number (filled with None or not)
def __str__(self):
f_str = f"[{str(type(self)).rsplit('.', maxsplit=1)[-1][0:-2]}]"
f_str += f"\n - Path: '{self.path}'"
f_str += f"\n - Tasks ({len(self.tasks)}): {self.tasks}"
f_str += f"\n - Length: {len(self)}"
f_str += f"\n - Handle missing data mode: '{self.handle_missing_data}'"
return f_str
def __repr__(self):
return str(self)
def main():
"""main fn"""
parser = ArgumentParser()
parser.add_argument("dataset_path", type=Path)
parser.add_argument("--handle_missing_data", choices=("drop", "fill_none"), default="fill_none")
args = parser.parse_args()
reader = MultiTaskDataset(args.dataset_path, task_names=None, handle_missing_data=args.handle_missing_data)
print(reader)
print(f"Shape: {reader.data_shape}")
rand_ix = np.random.randint(len(reader))
data, name, repr_names = reader[rand_ix] # get a random single data point
print(f"Name: {name}. Nodes: {repr_names}")
pprint({k: v for k, v in data.items()})
data, name, repr_names = reader[rand_ix: min(len(reader), rand_ix + 5)] # get a random batch
print(f"Name: {name}. Nodes: {repr_names}")
pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically
loader = DataLoader(reader, collate_fn=reader.collate_fn, batch_size=5, shuffle=True)
data, name, repr_names = next(iter(loader)) # get a random batch using torch DataLoader
print(f"Name: {name}. Nodes: {repr_names}")
pprint({k: v for k, v in data.items()}) # Nones are converted to 0s automagically
if __name__ == "__main__":
main()