OlameMend commited on
Commit
106edab
·
verified ·
1 Parent(s): 39a1f6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -12
README.md CHANGED
@@ -1,8 +1,4 @@
1
  ---
2
- license: cc-by-4.0
3
- task_categories:
4
- - text-to-speech
5
- - automatic-speech-recognition
6
  language:
7
  - af
8
  - bag
@@ -52,8 +48,12 @@ language:
52
  - ybb
53
  - yor
54
  - zul
 
 
 
 
55
 
56
-
57
 
58
  # SOREVA
59
 
@@ -100,8 +100,9 @@ from datasets import load_dataset
100
  dataset = load_dataset("OlameMend/soreva", "all", split="test")
101
 
102
  ```
 
103
 
104
- ### 🎧 Getting Audio and Transcription
105
 
106
  You can easily access and listen to audio samples along with their transcriptions:
107
 
@@ -116,13 +117,13 @@ soreva = load_dataset("OlameMend/soreva", "ha_ng", split='test' , trust_remote_c
116
  audio_array = soreva[0]['audio']['array'] # audio data as numpy array
117
  sr = soreva[0]['audio']['sampling_rate'] # sampling rate
118
 
119
- # Print the corresponding transcription
120
  print(soreva[0]['transcription'])
121
 
122
  # Play the audio in a Jupyter notebook
123
  Audio(audio_array, rate=sr)
124
  ```
125
- thele
126
  ## Dataset Structure
127
 
128
  We show detailed information the example configurations `ewo_cm` of the dataset.
@@ -131,11 +132,10 @@ All other configurations have the same structure.
131
  ### Data Instances
132
 
133
  **ewo_cm**
134
- - Size of downloaded dataset files: 1.47 GB
135
- - Size of the generated dataset: 1 MB
136
- - Total amount of disk used: 1.47 GB
137
 
138
- An example of a data instance of the config `af_za` looks as follows:
139
 
140
  ```
141
  {'path': '/home/mendo/.cache/huggingface/datasets/downloads/extracted/3f773a931d09d3c4f9e9a8643e93d191a30d36df95ae32eedbafb6a634135f98/cm_ewo_001.wav',
@@ -183,9 +183,11 @@ The data were collected by the Goethe-Institut and consist of 150 audio samples
183
  This dataset is meant to encourage the development of speech technology in a lot more languages of the world. One of the goal is to give equal access to technologies like speech recognition or speech translation to everyone, meaning better dubbing or better access to content from the internet (like podcasts, streaming or videos).
184
 
185
  ### Discussion of Biases
 
186
 
187
 
188
  ### Other Known Limitations
 
189
 
190
 
191
  ## Additional Information
 
1
  ---
 
 
 
 
2
  language:
3
  - af
4
  - bag
 
48
  - ybb
49
  - yor
50
  - zul
51
+ license: cc-by-4.0
52
+ task_categories:
53
+ - text-to-speech
54
+ - automatic-speech-recognition
55
 
56
+ ---
57
 
58
  # SOREVA
59
 
 
100
  dataset = load_dataset("OlameMend/soreva", "all", split="test")
101
 
102
  ```
103
+ ### 1. Out-of-domain TTS & ASR model
104
 
105
+ #🎧 Getting Audio and Transcription
106
 
107
  You can easily access and listen to audio samples along with their transcriptions:
108
 
 
117
  audio_array = soreva[0]['audio']['array'] # audio data as numpy array
118
  sr = soreva[0]['audio']['sampling_rate'] # sampling rate
119
 
120
+ # Print the corresponding transcription or use it for TTS inference for evaluation
121
  print(soreva[0]['transcription'])
122
 
123
  # Play the audio in a Jupyter notebook
124
  Audio(audio_array, rate=sr)
125
  ```
126
+
127
  ## Dataset Structure
128
 
129
  We show detailed information the example configurations `ewo_cm` of the dataset.
 
132
  ### Data Instances
133
 
134
  **ewo_cm**
135
+ - Size of downloaded dataset files: 14 MB
136
+
 
137
 
138
+ An example of a data instance of the config `ewo_cm` looks as follows:
139
 
140
  ```
141
  {'path': '/home/mendo/.cache/huggingface/datasets/downloads/extracted/3f773a931d09d3c4f9e9a8643e93d191a30d36df95ae32eedbafb6a634135f98/cm_ewo_001.wav',
 
183
  This dataset is meant to encourage the development of speech technology in a lot more languages of the world. One of the goal is to give equal access to technologies like speech recognition or speech translation to everyone, meaning better dubbing or better access to content from the internet (like podcasts, streaming or videos).
184
 
185
  ### Discussion of Biases
186
+ For all languages, only male voice is represented
187
 
188
 
189
  ### Other Known Limitations
190
+ Certains transcript only contain single word instead of complete sentence; others line of transcription has deux sentences(variance) for the same audio
191
 
192
 
193
  ## Additional Information