Datasets:
QCRI
/

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
Firoj commited on
Commit
93470f4
·
1 Parent(s): 6ae2656

updated data-card

Browse files
Files changed (1) hide show
  1. README.md +28 -7
README.md CHANGED
@@ -1,4 +1,25 @@
1
- # Dataset Card for HumAID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Table of Contents
4
  - [Dataset Description](#dataset-description)
@@ -47,7 +68,7 @@ The HumAID Twitter dataset consists of several thousands of manually annotated t
47
  - Rescue volunteering or donation effort
48
  - Sympathy and support
49
 
50
- The resulting annotated dataset consists of 11 labels.
51
 
52
  ### Supported Tasks and Benchmark
53
  The dataset can be used to train a model for multiclass tweet classification for disaster response. The benchmark results can be found in https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919.
@@ -66,7 +87,7 @@ English
66
  ```
67
  {
68
 
69
- "tweet_text": "@RT_com: URGENT: Death toll in #Ecuador #quake rises to 233 \u2013 President #Correa #1 in #Pakistan",
70
 
71
  "class_label": "injured_or_dead_people"
72
 
@@ -92,14 +113,14 @@ English
92
 
93
  #### Initial Data Collection and Normalization
94
 
95
- Tweets has been collected during several disaster events.
96
 
97
 
98
  ### Annotations
99
 
100
  #### Annotation process
101
 
102
- AMT has been used to annotate the dataset. Please check the paper for a more detail.
103
 
104
  #### Who are the annotators?
105
 
@@ -124,7 +145,7 @@ AMT has been used to annotate the dataset. Please check the paper for a more det
124
 
125
  ### Dataset Curators
126
 
127
- Authors of the paper.
128
 
129
 
130
  ### Licensing Information
@@ -144,4 +165,4 @@ Year = {2021},
144
  publisher={AAAI},
145
  address={Online},
146
  }
147
- ```
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - Disaster
9
+ - Crisis Informatics
10
+ pretty_name: 'HumAID: Human-Annotated Disaster Incidents Data from Twitter'
11
+ size_categories:
12
+ - 10K<n<100K
13
+ dataset_info:
14
+ splits:
15
+ - name: train
16
+ num_examples: 53531
17
+ - name: dev
18
+ num_examples: 7793
19
+ - name: test
20
+ num_examples: 15160
21
+ ---
22
+ # HumAID: Human-Annotated Disaster Incidents Data from Twitter
23
 
24
  ## Table of Contents
25
  - [Dataset Description](#dataset-description)
 
68
  - Rescue volunteering or donation effort
69
  - Sympathy and support
70
 
71
+ The resulting annotated dataset consists of 11 labels.
72
 
73
  ### Supported Tasks and Benchmark
74
  The dataset can be used to train a model for multiclass tweet classification for disaster response. The benchmark results can be found in https://ojs.aaai.org/index.php/ICWSM/article/view/18116/17919.
 
87
  ```
88
  {
89
 
90
+ "tweet_text": "@RT_com: URGENT: Death toll in #Ecuador #quake rises to 233 \u2013 President #Correa #1 in #Pakistan",
91
 
92
  "class_label": "injured_or_dead_people"
93
 
 
113
 
114
  #### Initial Data Collection and Normalization
115
 
116
+ Tweets has been collected during several disaster events.
117
 
118
 
119
  ### Annotations
120
 
121
  #### Annotation process
122
 
123
+ AMT has been used to annotate the dataset. Please check the paper for a more detail.
124
 
125
  #### Who are the annotators?
126
 
 
145
 
146
  ### Dataset Curators
147
 
148
+ Authors of the paper.
149
 
150
 
151
  ### Licensing Information
 
165
  publisher={AAAI},
166
  address={Online},
167
  }
168
+ ```