|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{miranda-2023-developing, |
|
title = {Developing a Named Entity Recognition Dataset for Tagalog}, |
|
author = "Miranda, Lester James Validad", |
|
booktitle = "Proceedings of the First Workshop for Southeast Asian Language Processing (SEALP)," |
|
month = nov, |
|
year = 2023, |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["tgl"] |
|
_DATASETNAME = "tlunified_ner" |
|
_DESCRIPTION = """\ |
|
This dataset contains the annotated TLUnified corpora from Cruz and Cheng |
|
(2021). It is a curated sample of around 7,000 documents for the named entity |
|
recognition (NER) task. The majority of the corpus are news reports in Tagalog, |
|
resembling the domain of the original ConLL 2003. There are three entity types: |
|
Person (PER), Organization (ORG), and Location (LOC). |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/ljvmiranda921/tlunified-ner" |
|
_LICENSE = Licenses.GPL_3_0.value |
|
_URLS = { |
|
"train": "https://huggingface.co/datasets/ljvmiranda921/tlunified-ner/resolve/main/corpus/iob/train.iob", |
|
"dev": "https://huggingface.co/datasets/ljvmiranda921/tlunified-ner/resolve/main/corpus/iob/dev.iob", |
|
"test": "https://huggingface.co/datasets/ljvmiranda921/tlunified-ner/resolve/main/corpus/iob/test.iob", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class TLUnifiedNERDataset(datasets.GeneratorBasedBuilder): |
|
"""Tagalog Named Entity Recognition dataset from https://huggingface.co/ljvmiranda921/tlunified-ner""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "seq_label" |
|
LABEL_CLASSES = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.seq_label_features(self.LABEL_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_files = { |
|
"train": Path(dl_manager.download_and_extract(_URLS["train"])), |
|
"dev": Path(dl_manager.download_and_extract(_URLS["dev"])), |
|
"test": Path(dl_manager.download_and_extract(_URLS["test"])), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_files["dev"], "split": "dev"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_files["test"], "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
|
|
|
|
label_key = "ner_tags" if self.config.schema == "source" else "labels" |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
label_key: ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
|
|
token, ner_tag = line.split("\t") |
|
tokens.append(token) |
|
ner_tags.append(ner_tag.rstrip()) |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
label_key: ner_tags, |
|
} |
|
|