File size: 9,663 Bytes
9d1ef5f 371795d c70c555 371795d 7ddc42d 371795d f704e01 371795d c70c555 7ddc42d 371795d e34ac59 dd3d5ad e34ac59 4c47bcc e34ac59 4c47bcc e34ac59 b4835d2 6f9a305 4c47bcc e34ac59 89f273f e34ac59 4c47bcc e34ac59 4c47bcc e34ac59 4c47bcc e34ac59 6729de3 e34ac59 4c47bcc e34ac59 68fa074 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
language:
- en
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: single_presence
path: data/single_presence-*
- split: co_occurrence
path: data/co_occurrence-*
dataset_info:
features:
- name: image
dtype: image
- name: mask
dtype: image
- name: boxed_image
dtype: image
- name: box_xmin
dtype: float64
- name: box_xmax
dtype: float64
- name: box_ymin
dtype: float64
- name: box_ymax
dtype: float64
- name: is_coco
dtype: int64
- name: label_name
dtype: string
- name: co_occurrence
dtype: int64
- name: written_descriptions
sequence: string
- name: spoken_descriptions
sequence: string
splits:
- name: single_presence
num_bytes: 174917975.06868687
num_examples: 492
- name: co_occurrence
num_bytes: 367184530.93131316
num_examples: 993
download_size: 429876515
dataset_size: 542102506.0
---
<h1 align="center">💬 VLM-REG: Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation</h1>
<p align="center">
📃 <a href="https://arxiv.org/abs/2504.16060" target="_blank">Paper</a> |🏠 <a href="https://vlm-reg.github.io" target="_blank">Homepage</a>
</p>
## Overview
Referring Expression Generation (REG)—the task of producing a concise and unambiguous description that allows a listener to identify a target object—lies at the heart of pragmatic communication in vision-language systems. However, existing benchmarks suffer from two major limitations:
1. **Data leakage in RefCOCO/RefCOCO+**, which raises concerns about evaluation contamination, especially for VLMs trained on MSCOCO.
2. **Lack of spoken data**, despite the fact that real-world referring is often **real-time** and **spontaneous**, unlike written language, which benefits from planning and revision.
To address these gaps, we introduce **RefOI**, a curated dataset built from the [OpenImages V7](https://storage.googleapis.com/openimages/web/index.html) Instance Segmentation validation set.
**Key features:**
- 1,485 real-world object instances, equally distributed across **COCO** (744) and **non-COCO** (741) classes.
- Includes **single presence** and **co-occurrence** images for each class.
- Each instance annotated with **3 written** and **2 spoken** human referring expressions.
Using RefOI, we evaluate several state-of-the-art VLMs and uncover **three tiers of pragmatic failure**:
- **Ambiguity**: Generated expressions often fail to uniquely identify the referent.
- **Redundancy**: Models include excessive or irrelevant details, violating principles of informativeness and efficiency.
- **Misalignment**: Model preferences diverge from human pragmatics, favoring visual complexity over minimal spatial cues.

For token-level annotation of referring expressions, see the companion dataset [RefOI-TLHF](https://huggingface.co/datasets/Seed42Lab/RefOI-TLHF), which provides minimal span supervision for both human- and model-generated descriptions.
## Dataset Schema and Split
### Data Fields
Each entry in the dataset contains the following fields:
- `image`: The original image file.
- `mask`: A binary segmentation mask isolating the target object.
- `boxed_image`: The original image overlaid with a red bounding box highlighting the target object.
- `box_xmin`, `box_xmax`, `box_ymin`, `box_ymax`: The normalized bounding‑box coordinates.
- `is_coco`: A binary flag (1 for COCO-class, 0 for non‑COCO).
- `label_name`: The object’s class label (e.g., “muffin,” “giraffe”).
- `co_occurrence`: The number of same‑class instances in the image (1 = no distractors; >1 = multiple).
- `written_descriptions`: Three human‑typed referring expressions.
- `spoken_descriptions`: Two human‑spoken expressions (transcribed and optionally corrected by annotators).
### Dataset Split
- `single_presence` (`co_occurrence = 1`):
Only one object of the target class appears (no same‑class distractors in the image).
- `co_occurrence` (`co_occurrence > 1`):
Multiple objects of the same class appear in the image, introducing potential referential ambiguity.
## Usage
```python
from datasets import load_dataset
# only one object of the class
ds_single = load_dataset("Seed42Lab/RefOI", split="single_presence")
# multiple objects of the class
ds_multi = load_dataset("Seed42Lab/RefOI", split="co_occurrence")
print(ds_single[0])
print(ds_multi[0])
```
## Experiments
We compare multiple models across standard metrics, listener-based accuracy, and human judgment. Humans outperform all models by large margins (e.g., >90% vs. ~50%).
Automatic metrics such as BLEU and CIDEr show poor correlation with human judgment, frequently ranking verbose models higher.
Even listener-based scores (REC) fail to consistently match human preferences, indicating that existing metrics do not capture pragmatic competence effectively.
| Model | Instr. | BLEU-1 | BLEU-4 | ROUGE-1 | ROUGE-L | METEOR | CIDEr | SPICE | BERT | CLIP | REC | Human | Irrel% |
| --------- | ------ | --------- | -------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- |
| LLaVA-7B | Dft. | 13.27 | 1.60 | 18.09 | 16.30 | 19.29 | 2.10 | 10.50 | 85.51 | 79.02 | 32.41 | 39.46 | 87.30 |
| | Brf. | 28.74 | 6.05 | **36.46** | 35.50 | 19.15 | 10.80 | 24.59 | 89.02 | 70.72 | 25.51 | 30.57 | 41.95 |
| LLaVA-13B | Dft. | 8.17 | 1.07 | 11.98 | 10.94 | 16.89 | 0.77 | 7.92 | 84.61 | 79.85 | 30.13 | 46.40 | 91.85 |
| | Brf. | 28.96 | 5.81 | 36.44 | **35.64** | 20.13 | 8.14 | 21.63 | 88.42 | 72.99 | 28.92 | 32.53 | 49.65 |
| LLaVA-34B | Dft. | 6.29 | 0.78 | 9.82 | 9.11 | 16.15 | 0.07 | 7.61 | 84.39 | 79.86 | 33.42 | 46.53 | 92.90 |
| | Brf. | 28.55 | 6.38 | 32.99 | 31.67 | 20.48 | 9.60 | 16.50 | 88.50 | 74.95 | 35.24 | 36.77 | 56.11 |
| XComposer | Dft. | 5.25 | 0.65 | 8.38 | 7.81 | 14.58 | 3.10 | 6.37 | 84.11 | 79.86 | 38.06 | 52.19 | 92.81 |
| | Brf. | 13.59 | 2.17 | 17.77 | 16.69 | 19.95 | 5.52 | 10.63 | 85.52 | 79.66 | 38.47 | 51.65 | 80.36 |
| MiniCPM-V | Dft. | 6.38 | 0.67 | 9.86 | 8.78 | 15.28 | 0.05 | 6.30 | 84.29 | 80.38 | 37.93 | 45.12 | 92.97 |
| | Brf. | 16.03 | 3.15 | 19.56 | 18.19 | 18.77 | 6.36 | 11.16 | 86.29 | 78.55 | 35.04 | 45.79 | 72.87 |
| GLaMM | Dft. | 15.01 | 3.32 | 16.69 | 16.29 | 11.49 | 9.08 | 3.90 | 86.42 | 58.26 | 5.78 | 3.84 | 74.68 |
| | Brf. | 18.46 | 4.45 | 20.92 | 20.46 | 14.18 | 10.48 | 4.44 | 86.65 | 58.60 | 5.72 | 4.85 | 70.52 |
| CogVLM | Dft. | 31.13 | **8.70** | 33.89 | 32.32 | 23.50 | **41.62** | 24.09 | 89.78 | 66.54 | 33.29 | 26.67 | **26.39** |
| | Brf. | **31.39** | 8.69 | 34.70 | 32.94 | **24.87** | 41.41 | **24.74** | **90.00** | 69.15 | 38.80 | 33.53 | 29.88 |
| GPT-4o | Dft. | 7.47 | 0.85 | 11.61 | 10.43 | 17.39 | 0.03 | 7.21 | 84.57 | **80.81** | **41.29** | **59.80** | 89.81 |
| | Brf. | 25.30 | 5.78 | 28.76 | 27.36 | 19.02 | 8.17 | 15.31 | 88.11 | 76.58 | 40.08 | 51.72 | 52.75 |
| Human | Spk. | 66.18 | 22.58 | 70.15 | 66.45 | 48.28 | 112.04 | 42.35 | 93.89 | 71.60 | 64.56 | 92.20 | 9.15 |
| | Wrt. | - | - | - | - | - | - | - | - | 70.43 | 63.69 | 89.29 | 7.29 |
Model performance under different **Instr.** (Instruction) settings: **Dft.** (Default) prompt and **Brf.** (Brief) prompt. All model predictions are evaluated against Human **Wrt.** (Written) results as the reference texts. We also compute Human **Spk.** (Spoken) data in comparison with human-written data. **Irrel%** refers to the percentage of irrelevant words in the referring expression of the examples evaluated as successful.
## Recommended Use of Our Dataset
The `RefOI` dataset is designed for fine-grained REG/REC analysis. It distinguishes between **COCO** and **non-COCO classes**, and between scenes with **single presence vs. co-occurrence** of the same class.
We encourage users to leverage these distinctions for deeper insights and invite community contributions to expand non-COCO annotations.
## Citation
If you find our dataset helpful, please cite our work:
```bibtex
@misc{ma2025visionlanguagemodelspragmaticallycompetent,
title={Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation},
author={Ziqiao Ma and Jing Ding and Xuejun Zhang and Dezhi Luo and Jiahe Ding and Sihan Xu and Yuchen Huang and Run Peng and Joyce Chai},
year={2025},
eprint={2504.16060},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.16060},
}
``` |