Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
File size: 9,663 Bytes
9d1ef5f
 
 
 
 
371795d
 
 
c70c555
 
 
 
371795d
 
7ddc42d
 
 
 
 
 
371795d
 
 
 
 
 
 
 
 
 
 
 
 
 
f704e01
 
 
 
371795d
c70c555
 
 
 
 
 
 
7ddc42d
371795d
e34ac59
 
 
 
 
 
dd3d5ad
e34ac59
 
 
 
 
 
 
 
 
 
 
4c47bcc
e34ac59
 
 
4c47bcc
e34ac59
 
 
 
 
 
 
 
 
 
 
 
b4835d2
 
 
6f9a305
4c47bcc
 
e34ac59
 
 
 
 
 
 
89f273f
e34ac59
 
 
 
4c47bcc
 
 
 
 
 
e34ac59
 
 
 
 
 
 
4c47bcc
 
 
 
e34ac59
4c47bcc
 
e34ac59
 
 
 
 
 
 
 
 
 
 
6729de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e34ac59
 
 
 
 
 
 
4c47bcc
e34ac59
 
68fa074
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language:
- en
size_categories:
- 1K<n<10K
configs:
- config_name: default
  data_files:
  - split: single_presence
    path: data/single_presence-*
  - split: co_occurrence
    path: data/co_occurrence-*
dataset_info:
  features:
  - name: image
    dtype: image
  - name: mask
    dtype: image
  - name: boxed_image
    dtype: image
  - name: box_xmin
    dtype: float64
  - name: box_xmax
    dtype: float64
  - name: box_ymin
    dtype: float64
  - name: box_ymax
    dtype: float64
  - name: is_coco
    dtype: int64
  - name: label_name
    dtype: string
  - name: co_occurrence
    dtype: int64
  - name: written_descriptions
    sequence: string
  - name: spoken_descriptions
    sequence: string
  splits:
  - name: single_presence
    num_bytes: 174917975.06868687
    num_examples: 492
  - name: co_occurrence
    num_bytes: 367184530.93131316
    num_examples: 993
  download_size: 429876515
  dataset_size: 542102506.0
---



<h1 align="center">💬 VLM-REG: Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation</h1>

<p align="center">
  📃 <a href="https://arxiv.org/abs/2504.16060" target="_blank">Paper</a> |🏠 <a href="https://vlm-reg.github.io" target="_blank">Homepage</a>
</p>



## Overview

Referring Expression Generation (REG)—the task of producing a concise and unambiguous description that allows a listener to identify a target object—lies at the heart of pragmatic communication in vision-language systems. However, existing benchmarks suffer from two major limitations:

1. **Data leakage in RefCOCO/RefCOCO+**, which raises concerns about evaluation contamination, especially for VLMs trained on MSCOCO.
2. **Lack of spoken data**, despite the fact that real-world referring is often **real-time** and **spontaneous**, unlike written language, which benefits from planning and revision.

To address these gaps, we introduce **RefOI**, a curated dataset built from the  [OpenImages V7](https://storage.googleapis.com/openimages/web/index.html)  Instance Segmentation validation set.

**Key features:**
- 1,485 real-world object instances, equally distributed across **COCO** (744) and **non-COCO** (741) classes.
- Includes **single presence** and **co-occurrence** images for each class.
- Each instance annotated with **3 written** and **2 spoken** human referring expressions.


Using RefOI, we evaluate several state-of-the-art VLMs and uncover **three tiers of pragmatic failure**:

- **Ambiguity**: Generated expressions often fail to uniquely identify the referent.
- **Redundancy**: Models include excessive or irrelevant details, violating principles of informativeness and efficiency.
- **Misalignment**: Model preferences diverge from human pragmatics, favoring visual complexity over minimal spatial cues.

![Overview](vlm-reg.png)


For token-level annotation of referring expressions, see the companion dataset [RefOI-TLHF](https://huggingface.co/datasets/Seed42Lab/RefOI-TLHF), which provides minimal span supervision for both human- and model-generated descriptions.


## Dataset Schema and Split

### Data Fields
Each entry in the dataset contains the following fields:

- `image`: The original image file.  
- `mask`: A binary segmentation mask isolating the target object.  
- `boxed_image`: The original image overlaid with a red bounding box highlighting the target object.  
- `box_xmin`, `box_xmax`, `box_ymin`, `box_ymax`: The normalized bounding‑box coordinates.  
- `is_coco`: A binary flag (1 for COCO-class, 0 for non‑COCO).  
- `label_name`: The object’s class label (e.g., “muffin,” “giraffe”).  
- `co_occurrence`: The number of same‑class instances in the image (1 = no distractors; >1 = multiple).  
- `written_descriptions`: Three human‑typed referring expressions.  
- `spoken_descriptions`: Two human‑spoken expressions (transcribed and optionally corrected by annotators).

### Dataset Split
- `single_presence` (`co_occurrence = 1`):  
  Only one object of the target class appears (no same‑class distractors in the image).

- `co_occurrence` (`co_occurrence > 1`):  
  Multiple objects of the same class appear in the image, introducing potential referential ambiguity.


## Usage

```python
from datasets import load_dataset

# only one object of the class
ds_single = load_dataset("Seed42Lab/RefOI", split="single_presence")
# multiple objects of the class
ds_multi = load_dataset("Seed42Lab/RefOI", split="co_occurrence")

print(ds_single[0])
print(ds_multi[0])
```


## Experiments

We compare multiple models across standard metrics, listener-based accuracy, and human judgment. Humans outperform all models by large margins (e.g., >90% vs. ~50%).
Automatic metrics such as BLEU and CIDEr show poor correlation with human judgment, frequently ranking verbose models higher. 
Even listener-based scores (REC) fail to consistently match human preferences, indicating that existing metrics do not capture pragmatic competence effectively.

| Model     | Instr. | BLEU-1    | BLEU-4   | ROUGE-1   | ROUGE-L   | METEOR    | CIDEr     | SPICE     | BERT      | CLIP      | REC       | Human     | Irrel%    |
| --------- | ------ | --------- | -------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- | --------- |
| LLaVA-7B  | Dft.   | 13.27     | 1.60     | 18.09     | 16.30     | 19.29     | 2.10      | 10.50     | 85.51     | 79.02     | 32.41     | 39.46     | 87.30     |
|           | Brf.   | 28.74     | 6.05     | **36.46** | 35.50     | 19.15     | 10.80     | 24.59     | 89.02     | 70.72     | 25.51     | 30.57     | 41.95     |
| LLaVA-13B | Dft.   | 8.17      | 1.07     | 11.98     | 10.94     | 16.89     | 0.77      | 7.92      | 84.61     | 79.85     | 30.13     | 46.40     | 91.85     |
|           | Brf.   | 28.96     | 5.81     | 36.44     | **35.64** | 20.13     | 8.14      | 21.63     | 88.42     | 72.99     | 28.92     | 32.53     | 49.65     |
| LLaVA-34B | Dft.   | 6.29      | 0.78     | 9.82      | 9.11      | 16.15     | 0.07      | 7.61      | 84.39     | 79.86     | 33.42     | 46.53     | 92.90     |
|           | Brf.   | 28.55     | 6.38     | 32.99     | 31.67     | 20.48     | 9.60      | 16.50     | 88.50     | 74.95     | 35.24     | 36.77     | 56.11     |
| XComposer | Dft.   | 5.25      | 0.65     | 8.38      | 7.81      | 14.58     | 3.10      | 6.37      | 84.11     | 79.86     | 38.06     | 52.19     | 92.81     |
|           | Brf.   | 13.59     | 2.17     | 17.77     | 16.69     | 19.95     | 5.52      | 10.63     | 85.52     | 79.66     | 38.47     | 51.65     | 80.36     |
| MiniCPM-V | Dft.   | 6.38      | 0.67     | 9.86      | 8.78      | 15.28     | 0.05      | 6.30      | 84.29     | 80.38     | 37.93     | 45.12     | 92.97     |
|           | Brf.   | 16.03     | 3.15     | 19.56     | 18.19     | 18.77     | 6.36      | 11.16     | 86.29     | 78.55     | 35.04     | 45.79     | 72.87     |
| GLaMM     | Dft.   | 15.01     | 3.32     | 16.69     | 16.29     | 11.49     | 9.08      | 3.90      | 86.42     | 58.26     | 5.78      | 3.84      | 74.68     |
|           | Brf.   | 18.46     | 4.45     | 20.92     | 20.46     | 14.18     | 10.48     | 4.44      | 86.65     | 58.60     | 5.72      | 4.85      | 70.52     |
| CogVLM    | Dft.   | 31.13     | **8.70** | 33.89     | 32.32     | 23.50     | **41.62** | 24.09     | 89.78     | 66.54     | 33.29     | 26.67     | **26.39** |
|           | Brf.   | **31.39** | 8.69     | 34.70     | 32.94     | **24.87** | 41.41     | **24.74** | **90.00** | 69.15     | 38.80     | 33.53     | 29.88     |
| GPT-4o    | Dft.   | 7.47      | 0.85     | 11.61     | 10.43     | 17.39     | 0.03      | 7.21      | 84.57     | **80.81** | **41.29** | **59.80** | 89.81     |
|           | Brf.   | 25.30     | 5.78     | 28.76     | 27.36     | 19.02     | 8.17      | 15.31     | 88.11     | 76.58     | 40.08     | 51.72     | 52.75     |
| Human     | Spk.   | 66.18     | 22.58    | 70.15     | 66.45     | 48.28     | 112.04    | 42.35     | 93.89     | 71.60     | 64.56     | 92.20     | 9.15      |
|           | Wrt.   | -         | -        | -         | -         | -         | -         | -         | -         | 70.43     | 63.69     | 89.29     | 7.29      |

Model performance under different **Instr.** (Instruction) settings: **Dft.** (Default) prompt and **Brf.** (Brief) prompt. All model predictions are evaluated against Human **Wrt.** (Written) results as the reference texts. We also compute Human **Spk.** (Spoken) data in comparison with human-written data. **Irrel%** refers to the percentage of irrelevant words in the referring expression of the examples evaluated as successful.



## Recommended Use of Our Dataset

The `RefOI` dataset is designed for fine-grained REG/REC analysis. It distinguishes between **COCO** and **non-COCO classes**, and between scenes with **single presence vs. co-occurrence** of the same class. 
We encourage users to leverage these distinctions for deeper insights and invite community contributions to expand non-COCO annotations.


## Citation
If you find our dataset helpful, please cite our work:
```bibtex
@misc{ma2025visionlanguagemodelspragmaticallycompetent,
      title={Vision-Language Models Are Not Pragmatically Competent in Referring Expression Generation}, 
      author={Ziqiao Ma and Jing Ding and Xuejun Zhang and Dezhi Luo and Jiahe Ding and Sihan Xu and Yuchen Huang and Run Peng and Joyce Chai},
      year={2025},
      eprint={2504.16060},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.16060}, 
}
```