Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 2,639 Bytes
e0e9139
 
 
 
 
9601e01
 
 
ad104e9
 
9601e01
ad104e9
5524940
c51fabf
c81f392
c51fabf
ad104e9
9601e01
 
 
c51fabf
9601e01
5524940
9601e01
ad104e9
9601e01
c81f392
9601e01
 
 
 
 
ad104e9
 
 
 
 
 
9601e01
 
 
f660902
 
 
 
 
9601e01
 
 
 
 
 
f660902
9601e01
 
f660902
 
 
 
 
 
 
 
 
9601e01
 
 
 
f660902
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
language:
- en
pretty_name: W-Bench
size: 10,000 instances
---

# **[ICLR 2025]** [Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances](https://arxiv.org/abs/2410.18775)

# What is it?

**W-Bench is the first benchmark to evaluate watermarking robustness across four types of image editing techniques, including regeneration, global editing, local editing, and image-to-video generation.** 

Eleven representative watermarking methods are evaluated on the W-Bench. The W-Bench contains 10,000 instances sourced from datasets such as COCO, Flickr, ShareGPT4V, etc. 

GitHub Repo: [https://github.com/Shilin-LU/VINE](https://github.com/Shilin-LU/VINE)

# Dataset Structure

The evaluation set consists of six subsets, each targeting a different type of AIGC-based image editing:
- 1,000 samples for stochastic regeneration
- 1,000 samples for deterministic regeneration (aka, image inversion)
- 1,000 samples for global editing
- 5,000 samples for local editing (divided into five sets, each containing 1,000 images and 1,000 masks, with different mask sizes ranging from 10–60% of the image area)
- 1,000 samples for image-to-video generation
- 1,000 samples for testing conventional distortion (identical to the 1,000 samples used for deterministic regeneration)

# How to download and use 🍷 W-Bench

## Using `huggingface_hub`

```
huggingface-cli download Shilin-LU/W-Bench --repo-type=dataset --local-dir W-Bench
```

or

```python
from huggingface_hub import snapshot_download
folder = snapshot_download(
  "Shilin-LU/W-Bench",
  repo_type="dataset",
  local_dir="./W-Bench/",
  allow_patterns="DET_INVERSION_1K/image/*" # to download a specific branch
)
```

For faster downloads, make sure to install `pip install huggingface_hub[hf_transfer]` and set the environment variable `HF_HUB_ENABLE_HF_TRANSFER=1`.

## Using `datasets`

### 1. With Stream
```python
from datasets import load_dataset
dataset = load_dataset("Shilin-LU/W-Bench", split="train", streaming=True)
next(iter(dataset))['image'].save('output_stream.png')
```

### 2. Without Stream
```python
from datasets import load_dataset
dataset = load_dataset("Shilin-LU/W-Bench", split="train")
dataset[1]['image'].save('output.png')
```

# Citation Information
Paper on [arXiv](https://arxiv.org/abs/2410.18775)
```
@article{lu2024robust,
  title={Robust watermarking using generative priors against image editing: From benchmarking to advances},
  author={Lu, Shilin and Zhou, Zihan and Lu, Jiayou and Zhu, Yuanzhi and Kong, Adams Wai-Kin},
  journal={arXiv preprint arXiv:2410.18775},
  year={2024}
}
```