Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img width="700" height="400" src="images/LogoITD.png">
|
3 |
+
</p>
|
4 |
+
|
5 |
+
## Description
|
6 |
+
Introduction of new dataset for unsupervised fabric defect detection
|
7 |
+
This dataset aims to provide a color dataset with real industrial fabric defect gathered in a visiting machine with several industrial cameras.
|
8 |
+
It has been designed with the same nomenclature as MVTEC AD dataset (https://www.mvtec.com/company/research/datasets/mvtec-ad) for unsupervised anomaly detection.
|
9 |
+
|
10 |
+
<p align="center">
|
11 |
+
<img width="700" height="250" src="images/Samples.png">
|
12 |
+
</p>
|
13 |
+
|
14 |
+
<div align="center">
|
15 |
+
|
16 |
+
| Type | Total | Train(Good) | Test(Good) | Test(Defective) | Sample |
|
17 |
+
| :------:|:-----:|:-----:| :------:|:-----:|-----|
|
18 |
+
| type1cam1 | 386 | 272 | 28 | 86 | <img src="images/type1cam1.png" alt="" width="150"> |
|
19 |
+
| type2cam2 | 257 | 199 | 19 | 39 | <img src="images/type2cam2.png" alt="" width="150">|
|
20 |
+
| type3cam1 | 689 | 588 | 54 | 47 | <img src="images/type3cam1.png" alt="" width="150">|
|
21 |
+
| type4cam2 | 229 | 199 | 19 | 11 | <img src="images/type4cam2.png" alt="" width="150">|
|
22 |
+
| type5cam2 | 298 | 199 | 19 | 80 | <img src="images/type5cam2.png" alt="" width="150">|
|
23 |
+
| type6cam2 | 291 | 199 | 19 | 73 | <img src="images/type6cam2.png" alt="" width="150">|
|
24 |
+
| type7cam2 | 917 | 711 | 89 | 117 | <img src="images/type7cam2.png" alt="" width="150">|
|
25 |
+
| type8cam1 | 868 | 711 | 89 | 68 | <img src="images/type8cam1.png" alt="" width="150">|
|
26 |
+
| type9cam2 | 856 | 721 | 86 | 49 | <img src="images/type9cam2.png" alt="" width="150">|
|
27 |
+
| type10cam2 | 871 | 717 | 90 | 64 | <img src="images/type10cam2.png" alt="" width="150">|
|
28 |
+
|
29 |
+
</div>
|
30 |
+
|
31 |
+
## Download
|
32 |
+
|
33 |
+
The dataset can be downloaded in google drive with this link : [LINK](https://drive.google.com/drive/folders/1orrMLs0FH4KgEm0vIsneeX3qsvILMh6L?usp=sharing)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Utilisation
|
38 |
+
This dataset is designed for unsupervised anomaly detection task but can also be used for domain-generalization approach.
|
39 |
+
The nomenclature is designed as :
|
40 |
+
<p align="center">
|
41 |
+
<img width="550" height="350" src="images/Nomenclature2.png">
|
42 |
+
</p>
|
43 |
+
|
44 |
+
- category/
|
45 |
+
- train/
|
46 |
+
- good/
|
47 |
+
- img1.png
|
48 |
+
- ...
|
49 |
+
- test/
|
50 |
+
- anomaly/
|
51 |
+
- img1.png
|
52 |
+
- ...
|
53 |
+
- good/
|
54 |
+
- img1.png
|
55 |
+
- ...
|
56 |
+
|
57 |
+
As in any unsupervised training, train data are defect-free. Defective samples are only in the test set.
|
58 |
+
|
59 |
+
## Exemples
|
60 |
+
|
61 |
+
Exemple of defect segmentation obtained with our knowledge distillation-based method
|
62 |
+
<p align="center">
|
63 |
+
<img width="700" height="250" src="images/DefectITDB.png">
|
64 |
+
</p>
|
65 |
+
|
66 |
+
|
67 |
+
## Documentation
|
68 |
+
|
69 |
+
List of articles related to the subject of textile defect detection
|
70 |
+
|
71 |
+
- **MixedTeacher : Knowledge Distillation for fast inference textural anomaly detection** (https://arxiv.org/abs/2306.09859)
|
72 |
+
- **FABLE : Fabric Anomaly Detection Automation Process** (https://arxiv.org/abs/2306.10089)
|
73 |
+
- **Exploring Dual Model Knowledge Distillation for Anomaly Detection** (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4493018)
|
74 |
+
- **Distillation-based fabric anomaly detection** (https://journals.sagepub.com/doi/abs/10.1177/00405175231206820)(https://arxiv.org/abs/2401.02287)
|
75 |
+
## Auteurs
|
76 |
+
|
77 |
+
- Simon Thomine <sup>1</sup>, PhD student - [@SimonThomine](https://github.com/SimonThomine) - [email protected]
|
78 |
+
- Hichem Snoussi <sup>1</sup>, Full Professor
|
79 |
+
|
80 |
+
<sup>1</sup> University of Technology of Troyes, France
|
81 |
+
|
82 |
+
## Citation
|
83 |
+
If you use this dataset, please cite
|
84 |
+
```
|
85 |
+
@inproceedings{Thomine_2023_Knowledge,
|
86 |
+
author = {Thomine, Simon and Snoussi, Hichem},
|
87 |
+
title = {Distillation-based fabric anomaly detection},
|
88 |
+
booktitle = {Textile Research Journal},
|
89 |
+
month = {August},
|
90 |
+
year = {2023}
|
91 |
+
}
|
92 |
+
```
|
93 |
+
|
94 |
+
## Licence
|
95 |
+
|
96 |
+
|
97 |
+
This project is under the MIT license [MIT](https://opensource.org/licenses/MIT).
|
98 |
---
|
99 |
license: mit
|
100 |
---
|