File size: 4,221 Bytes
de6d8b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
HF dataset loading script
"""

import re
from pathlib import Path

import datasets
import pandas as pd

_DESCRIPTION = """Update-background tuples for 14 news event timelines."""

_URLS = {
    "events": "events.tar.gz",
    "train": "splits/train.txt",
    "dev": "splits/dev.txt",
    "test": "splits/test.txt",
}

_CITATION = """\
@article{pratapa-etal-2023-background,
title = {Background Summarization of Event Timelines},
author = {Pratapa, Adithya and Small, Kevin and Dreyer, Markus},
publisher = {EMNLP},
year = {2023}
}
"""
_HOMEPAGE = "https://github.com/amazon-science/background-summaries"
_LICENSE = "CC-BY-NC-4.0"


class BackgroundSummConfig(datasets.BuilderConfig):
    def __init__(self, features, **kwargs) -> None:
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.features = features


class BackgroundSumm(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        BackgroundSummConfig(
            name="background-summ",
            description=_DESCRIPTION,
            features=["src", "tgt", "z"],
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {field: datasets.Value("string") for field in ["src", "tgt", "z"]}
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        dl_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "events_path": Path(dl_files["events"]),
                    "splits_path": Path(dl_files["train"]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "events_path": Path(dl_files["events"]),
                    "splits_path": Path(dl_files["dev"]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "events_path": Path(dl_files["events"]),
                    "splits_path": Path(dl_files["test"]),
                },
            ),
        ]

    def _generate_examples(self, events_path: Path, splits_path: Path):
        # load events for the split
        with open(splits_path, "r") as rf:
            event_names = [line.strip() for line in rf.readlines()]

        data_idx = 0
        for event in event_names:
            # separately load update and background summaries for each annotator
            annotators = ["annotator1", "annotator2", "annotator3"]
            for ann in annotators:
                # load tsv path
                tsv_path = events_path / "events" / event / f"{ann}.tsv"
                df = pd.read_csv(tsv_path, sep="\t")
                df = df.fillna("")
                timestamps, updates, backgrounds = [], [], []
                for idx, row in enumerate(df.itertuples()):
                    ts = row.Date.strip("[]")
                    update = row.Update.replace("\\n", " ")
                    update = re.sub(r"[ ]+", r" ", update).strip()
                    background = row.Background.replace("\\n", " ")
                    background = re.sub(r"[ ]+", r" ", background).strip()

                    timestamps += [ts]
                    updates += [update]
                    backgrounds += [background]

                    # source is a timestamped concatenation of past updates
                    src = [
                        f"Date: {_ts}, Update: {_update}"
                        for _ts, _update in zip(timestamps[:-1], updates[:-1])
                    ]
                    src = " ".join(src)
                    # target is current background
                    tgt = backgrounds[-1]
                    # guidance is current update
                    z = f"Date: {ts}, Update: {updates[-1]}"

                    if idx > 0:
                        yield data_idx, {"src": src, "tgt": tgt, "z": z}
                    data_idx += 1