agentlans commited on
Commit
7d00907
·
verified ·
1 Parent(s): 97a8064

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +76 -0
  2. all.csv.gz +3 -0
  3. train.csv.gz +3 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Twitter Sentiment Meta-Analysis Dataset
2
+
3
+ ## Dataset Description
4
+
5
+ This dataset contains sentiment analysis results for English tweets collected between September 2009 and January 2010. The tweets were processed and analyzed using 10 different sentiment classifiers, with the final sentiment score derived from principal component analysis (PCA).
6
+
7
+ ## Source Data
8
+
9
+ - **Original Data**: Cheng-Caverlee-Lee Twitter Scrape (Sept 2009 - Jan 2010)
10
+ - **Number of Tweets**: 138 690
11
+ - **Language**: English only (filtered using langdetect)
12
+
13
+ ## Data Processing
14
+
15
+ 1. Text normalization:
16
+ - Normalized bullet points, quotation marks, Unicode characters, and whitespace
17
+ - Replaced emails, hashtags, phone numbers, URLs, and user handles with placeholder tokens
18
+
19
+ 2. Language filtering:
20
+ - Retained only English tweets using langdetect
21
+
22
+ 3. Sentiment analysis:
23
+ - Applied 10 different sentiment classifiers (see Models section)
24
+ - Sentiment scores represent the difference between positive and negative logits, except for one model using a 5-star rating system
25
+
26
+ 4. Final sentiment score:
27
+ - Performed PCA on the 10 classifier scores (column scaling only, no centering)
28
+ - Transformed PC1 to z-scores to obtain the final sentiment score
29
+
30
+ 5. Training subset:
31
+ - The sentiment scores were split into ten groups and 10000 from each group were used to make the training subset (72 415 rows)
32
+
33
+ ## Models
34
+
35
+ The following sentiment analysis models were used:
36
+
37
+ 1. [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest)
38
+ 2. [lxyuan/distilbert-base-multilingual-cased-sentiments-student](https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student)
39
+ 3. [ahmedrachid/FinancialBERT-Sentiment-Analysis](https://huggingface.co/ahmedrachid/FinancialBERT-Sentiment-Analysis)
40
+ 4. [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis)
41
+ 5. [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment)
42
+ 6. [siebert/sentiment-roberta-large-english](https://huggingface.co/siebert/sentiment-roberta-large-english)
43
+ 7. [soleimanian/financial-roberta-large-sentiment](https://huggingface.co/soleimanian/financial-roberta-large-sentiment)
44
+ 8. [FinanceInc/auditor_sentiment_finetuned](https://huggingface.co/FinanceInc/auditor_sentiment_finetuned)
45
+ 9. [Kaludi/Reviews-Sentiment-Analysis](https://huggingface.co/Kaludi/Reviews-Sentiment-Analysis)
46
+ 10. [StephanAkkerman/FinTwitBERT-sentiment](https://huggingface.co/StephanAkkerman/FinTwitBERT-sentiment)
47
+
48
+ ## Features
49
+
50
+ - `id`: A unique ID for each tweet (note: not the same IDs as the original dataset)
51
+ - `text`: Original tweet text after processing
52
+ - `*-sentiment`: Individual sentiment scores from 10 classifiers
53
+ - `sentiment`: Final sentiment score (PCA-derived)
54
+
55
+ ## Usage
56
+
57
+ This dataset is suitable for:
58
+ - Comparative analysis of sentiment classifiers
59
+ - Meta-analysis of Twitter sentiment
60
+ - Temporal analysis of public sentiment (Sept 2009 - Jan 2010)
61
+
62
+ ## Limitations
63
+
64
+ - Limited to English tweets only
65
+ - Temporal scope limited to Sept 2009 - Jan 2010
66
+ - User names, hash tags, URLs, conversation IDs were removed in order to focus on sentiment
67
+ - Sentiment scores are model-dependent and may not reflect ground truth
68
+ - Lack of context in conversation may impact sentiment scores
69
+
70
+ ## Citation
71
+
72
+ The original tweets are from:
73
+
74
+ Z. Cheng, J. Caverlee, and K. Lee. [You Are Where You Tweet: A Content-Based Approach to Geo-locating Twitter Users.](https://archive.org/details/twitter_cikm_2010) In Proceeding of the 19th ACM Conference on Information and Knowledge Management (CIKM), Toronto, Oct 2010.
75
+
76
+ All other analyses performed are my own.
all.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a583ad2f71114ed2faa6b40f1f7b5a8ddc3ec4f99d3c472767014a6c011ca3a6
3
+ size 11481895
train.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50a59ea34a25a20669395d2badb08bc82a4a8e9b80d1589fd5163e6ec9a69924
3
+ size 5943339