File size: 5,405 Bytes
4aa7566 f0d3288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
pretty_name: SEA Toxicity Detection
license:
- cc-by-nc-sa-4.0
- cc-by-nc-3.0
- cc-by-nc-4.0
task_categories:
- text-generation
- text-classification
language:
- id
- th
- vi
dataset_info:
features:
- name: label
dtype: string
- name: prompts
list:
- name: text
dtype: string
- name: prompt_templates
sequence: string
- name: id
dtype: string
- name: metadata
struct:
- name: language
dtype: string
splits:
- name: id
num_bytes: 728212
num_examples: 1000
- name: id_fewshot
num_bytes: 780
num_examples: 5
- name: th
num_bytes: 1356637
num_examples: 1000
- name: th_fewshot
num_bytes: 983
num_examples: 5
- name: vi
num_bytes: 699612
num_examples: 1000
- name: vi_fewshot
num_bytes: 584
num_examples: 5
download_size: 283080
dataset_size: 2786808
configs:
- config_name: default
data_files:
- split: id
path: data/id-*
- split: id_fewshot
path: data/id_fewshot-*
- split: th
path: data/th-*
- split: th_fewshot
path: data/th_fewshot-*
- split: vi
path: data/vi-*
- split: vi_fewshot
path: data/vi_fewshot-*
size_categories:
- 1K<n<10K
---
# SEA Toxicity Detection
SEA Toxicity Detection evaluates a model's ability to identify toxic content such as hate speech and abusive language in text. It is sampled from [MLHSD](https://aclanthology.org/W19-3506/) for Indonesian, [TTD](http://lrec-conf.org/workshops/lrec2018/W32/pdf/1_W32.pdf) for Thai, and [ViHSD](https://link.springer.com/chapter/10.1007/978-3-030-79457-6_35) for Vietnamese.
### Supported Tasks and Leaderboards
SEA Toxicity Detection is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the [SEA-HELM](https://leaderboard.sea-lion.ai/) leaderboard from [AI Singapore](https://aisingapore.org/).
### Languages
- Indonesian (id)
- Thai (th)
- Vietnamese (vi)
### Dataset Details
SEA Toxicity Detection is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the `prompts` column.
| Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
|-|:-|:-|:-|:-|
| id | 1000 | 34416 | 34238 | 40537
| th | 1000 | 38189 | 35980 | 42901
| vi | 1000 | 17540 | 16904 | 18287
| id_fewshot | 5 | 183 | 174 | 216
| th_fewshot | 5 | 130 | 121 | 150
| vi_fewshot | 5 | 104 | 97 | 104
| **total** | 3015 | 90562 | 87514 | 102195 |
### Data Sources
| Data Source | License | Language/s | Split/s
|-|:-|:-| :-|
| [MLHSD](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection) | [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) | Indonesian | id, id_fewshot
| [TTD](https://huggingface.co/datasets/tmu-nlp/thai_toxicity_tweet) | [CC BY-NC 3.0](https://creativecommons.org/licenses/by-nc/3.0/) | Thai |th, th_fewshot
| [ViHSD](https://github.com/sonlam1102/vihsd) | [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) | Vietnamese | vi, vi_fewshot
### License
For the license/s of the dataset/s, please refer to the data sources table above.
We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data.
### References
```bibtex
@inproceedings{ibrohim-budi-2019-multi,
title = "Multi-label Hate Speech and Abusive Language Detection in {I}ndonesian {T}witter",
author = "Ibrohim, Muhammad Okky and
Budi, Indra",
editor = "Roberts, Sarah T. and
Tetreault, Joel and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the Third Workshop on Abusive Language Online",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3506",
doi = "10.18653/v1/W19-3506",
pages = "46--57",
}
@inproceedings{sirihattasak2018annotation,
title={Annotation and classification of toxicity for Thai Twitter},
author={Sirihattasak, Sugan and Komachi, Mamoru and Ishikawa, Hiroshi},
booktitle={TA-COS 2018: 2nd Workshop on Text Analytics for Cybersecurity and Online Safety},
pages={1},
year={2018}
}
@InProceedings{10.1007/978-3-030-79457-6_35,
author="Luu, Son T.
and Nguyen, Kiet Van
and Nguyen, Ngan Luu-Thuy",
editor="Fujita, Hamido
and Selamat, Ali
and Lin, Jerry Chun-Wei
and Ali, Moonis",
title="A Large-Scale Dataset for Hate Speech Detection on Vietnamese Social Media Texts",
booktitle="Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices",
year="2021",
publisher="Springer International Publishing",
address="Cham",
pages="415--426",
isbn="978-3-030-79457-6"
}
@misc{leong2023bhasaholisticsoutheastasian,
title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models},
author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
year={2023},
eprint={2309.06085},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2309.06085},
}
``` |