anonymous-submission000 commited on
Commit
6b9b042
·
verified ·
1 Parent(s): 7aefd38

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -27,3 +27,52 @@ configs:
27
  - split: train
28
  path: data/train-*
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  - split: train
28
  path: data/train-*
29
  ---
30
+ # Dataset Card for VocSim - Mouse Identity Classification
31
+
32
+ ## Dataset Description
33
+
34
+ This dataset is used in the **VocSim benchmark** paper for evaluating the ability of neural audio embeddings to identify individual mice based on their ultrasonic vocalization (USV) syllables. It contains pre-segmented USV syllables from multiple individual mice, derived from recordings used in **Goffinet et al. (2021)~\cite{goffinet2021low}**.
35
+
36
+ The primary task associated with this dataset is supervised classification: training a model to predict the correct mouse identity (`speaker` field) given an audio input (a single syllable) or its derived features.
37
+
38
+ **Included Files:**
39
+ * Hugging Face `Dataset` object containing audio file paths (individual syllables) and metadata (mouse identity).
40
+
41
+ ## Dataset Structure
42
+
43
+ ### Data Instances
44
+
45
+ A typical example in the dataset looks like this:
46
+
47
+ ```python
48
+ {
49
+ 'audio': {'path': '/path/to/datasets/mouse_identity/BM003/BM003_syllable_1.wav', 'array': array([...], dtype=float32), 'sampling_rate': 250000},
50
+ 'subset': 'mouse_identity',
51
+ 'index': 50,
52
+ 'speaker': 'BM003', # The crucial individual mouse ID (target label)
53
+ 'label': 'BM003_syllable_1', # Syllable-specific identifier
54
+ 'original_name': 'BM003/BM003_syllable_1.wav' # Example original relative path
55
+ }
56
+ ```
57
+ ### Citation Information
58
+
59
+ If you use this dataset, please cite the VocSim benchmark paper, and the MUPET software if relying on the provided segmentation:
60
+ ```
61
+ @unpublished{vocsim2025,
62
+ title={VocSim: Zero-Shot Audio Similarity Benchmark for Neural Embeddings},
63
+ author={Anonymous},
64
+ year={2025},
65
+ note={Submitted manuscript}
66
+ }
67
+
68
+ @article{VanSegbroeck2017,
69
+ author = {Van Segbroeck, Maarten and Knoll, Aaron T. and Levitt, Patricia and Narayanan, Shrikanth},
70
+ title = "{MUPET}-Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations",
71
+ journal = {Neuron},
72
+ volume = {94},
73
+ number = {3},
74
+ pages = {465--485.e5},
75
+ year = {2017},
76
+ doi = {10.1016/j.neuron.2017.04.018}
77
+ }
78
+ ```