Commit
·
dc30617
1
Parent(s):
612d1a3
upload hubscripts/medmentions_hub.py to hub from bigbio repo
Browse files- medmentions.py +307 -0
medmentions.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and Simon Ott, github: nomisto
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
MedMentions is a new manually annotated resource for the recognition of biomedical concepts.
|
18 |
+
What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000
|
19 |
+
abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over
|
20 |
+
3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines.
|
21 |
+
|
22 |
+
Corpus: The MedMentions corpus consists of 4,392 papers (Titles and Abstracts) randomly selected
|
23 |
+
from among papers released on PubMed in 2016, that were in the biomedical field, published in
|
24 |
+
the English language, and had both a Title and an Abstract.
|
25 |
+
|
26 |
+
Annotators: We recruited a team of professional annotators with rich experience in biomedical
|
27 |
+
content curation to exhaustively annotate all UMLS® (2017AA full version) entity mentions in
|
28 |
+
these papers.
|
29 |
+
|
30 |
+
Annotation quality: We did not collect stringent IAA (Inter-annotator agreement) data. To gain
|
31 |
+
insight on the annotation quality of MedMentions, we randomly selected eight papers from the
|
32 |
+
annotated corpus, containing a total of 469 concepts. Two biologists ('Reviewer') who did not
|
33 |
+
participate in the annotation task then each reviewed four papers. The agreement between
|
34 |
+
Reviewers and Annotators, an estimate of the Precision of the annotations, was 97.3%.
|
35 |
+
|
36 |
+
For more information visit: https://github.com/chanzuckerberg/MedMentions
|
37 |
+
"""
|
38 |
+
|
39 |
+
import itertools as it
|
40 |
+
from typing import List
|
41 |
+
|
42 |
+
import datasets
|
43 |
+
|
44 |
+
from .bigbiohub import kb_features
|
45 |
+
from .bigbiohub import BigBioConfig
|
46 |
+
from .bigbiohub import Tasks
|
47 |
+
|
48 |
+
_LANGUAGES = ['English']
|
49 |
+
_PUBMED = True
|
50 |
+
_LOCAL = False
|
51 |
+
_CITATION = """\
|
52 |
+
@misc{mohan2019medmentions,
|
53 |
+
title={MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts},
|
54 |
+
author={Sunil Mohan and Donghui Li},
|
55 |
+
year={2019},
|
56 |
+
eprint={1902.09476},
|
57 |
+
archivePrefix={arXiv},
|
58 |
+
primaryClass={cs.CL}
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
|
62 |
+
_DATASETNAME = "medmentions"
|
63 |
+
_DISPLAYNAME = "MedMentions"
|
64 |
+
|
65 |
+
_DESCRIPTION = """\
|
66 |
+
MedMentions is a new manually annotated resource for the recognition of biomedical concepts.
|
67 |
+
What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000
|
68 |
+
abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over
|
69 |
+
3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines.
|
70 |
+
|
71 |
+
Corpus: The MedMentions corpus consists of 4,392 papers (Titles and Abstracts) randomly selected
|
72 |
+
from among papers released on PubMed in 2016, that were in the biomedical field, published in
|
73 |
+
the English language, and had both a Title and an Abstract.
|
74 |
+
|
75 |
+
Annotators: We recruited a team of professional annotators with rich experience in biomedical
|
76 |
+
content curation to exhaustively annotate all UMLS® (2017AA full version) entity mentions in
|
77 |
+
these papers.
|
78 |
+
|
79 |
+
Annotation quality: We did not collect stringent IAA (Inter-annotator agreement) data. To gain
|
80 |
+
insight on the annotation quality of MedMentions, we randomly selected eight papers from the
|
81 |
+
annotated corpus, containing a total of 469 concepts. Two biologists ('Reviewer') who did not
|
82 |
+
participate in the annotation task then each reviewed four papers. The agreement between
|
83 |
+
Reviewers and Annotators, an estimate of the Precision of the annotations, was 97.3%.
|
84 |
+
"""
|
85 |
+
|
86 |
+
_HOMEPAGE = "https://github.com/chanzuckerberg/MedMentions"
|
87 |
+
|
88 |
+
_LICENSE = 'Creative Commons Zero v1.0 Universal'
|
89 |
+
|
90 |
+
_URLS = {
|
91 |
+
"medmentions_full": [
|
92 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator.txt.gz",
|
93 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_trng.txt",
|
94 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_dev.txt",
|
95 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_test.txt",
|
96 |
+
],
|
97 |
+
"medmentions_st21pv": [
|
98 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/st21pv/data/corpus_pubtator.txt.gz",
|
99 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_trng.txt",
|
100 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_dev.txt",
|
101 |
+
"https://github.com/chanzuckerberg/MedMentions/raw/master/full/data/corpus_pubtator_pmids_test.txt",
|
102 |
+
],
|
103 |
+
}
|
104 |
+
|
105 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.NAMED_ENTITY_RECOGNITION]
|
106 |
+
|
107 |
+
_SOURCE_VERSION = "1.0.0"
|
108 |
+
|
109 |
+
_BIGBIO_VERSION = "1.0.0"
|
110 |
+
|
111 |
+
|
112 |
+
class MedMentionsDataset(datasets.GeneratorBasedBuilder):
|
113 |
+
"""MedMentions dataset for named-entity disambiguation (NED)"""
|
114 |
+
|
115 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
116 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
117 |
+
|
118 |
+
BUILDER_CONFIGS = [
|
119 |
+
BigBioConfig(
|
120 |
+
name="medmentions_full_source",
|
121 |
+
version=SOURCE_VERSION,
|
122 |
+
description="MedMentions Full source schema",
|
123 |
+
schema="source",
|
124 |
+
subset_id="medmentions_full",
|
125 |
+
),
|
126 |
+
BigBioConfig(
|
127 |
+
name="medmentions_full_bigbio_kb",
|
128 |
+
version=BIGBIO_VERSION,
|
129 |
+
description="MedMentions Full BigBio schema",
|
130 |
+
schema="bigbio_kb",
|
131 |
+
subset_id="medmentions_full",
|
132 |
+
),
|
133 |
+
BigBioConfig(
|
134 |
+
name="medmentions_st21pv_source",
|
135 |
+
version=SOURCE_VERSION,
|
136 |
+
description="MedMentions ST21pv source schema",
|
137 |
+
schema="source",
|
138 |
+
subset_id="medmentions_st21pv",
|
139 |
+
),
|
140 |
+
BigBioConfig(
|
141 |
+
name="medmentions_st21pv_bigbio_kb",
|
142 |
+
version=BIGBIO_VERSION,
|
143 |
+
description="MedMentions ST21pv BigBio schema",
|
144 |
+
schema="bigbio_kb",
|
145 |
+
subset_id="medmentions_st21pv",
|
146 |
+
),
|
147 |
+
]
|
148 |
+
|
149 |
+
DEFAULT_CONFIG_NAME = "medmentions_full_source"
|
150 |
+
|
151 |
+
def _info(self) -> datasets.DatasetInfo:
|
152 |
+
|
153 |
+
if self.config.schema == "source":
|
154 |
+
features = datasets.Features(
|
155 |
+
{
|
156 |
+
"pmid": datasets.Value("string"),
|
157 |
+
"passages": [
|
158 |
+
{
|
159 |
+
"type": datasets.Value("string"),
|
160 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
161 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"entities": [
|
165 |
+
{
|
166 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
167 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
168 |
+
"concept_id": datasets.Value("string"),
|
169 |
+
"semantic_type_id": datasets.Sequence(
|
170 |
+
datasets.Value("string")
|
171 |
+
),
|
172 |
+
}
|
173 |
+
],
|
174 |
+
}
|
175 |
+
)
|
176 |
+
|
177 |
+
elif self.config.schema == "bigbio_kb":
|
178 |
+
features = kb_features
|
179 |
+
|
180 |
+
return datasets.DatasetInfo(
|
181 |
+
description=_DESCRIPTION,
|
182 |
+
features=features,
|
183 |
+
homepage=_HOMEPAGE,
|
184 |
+
license=str(_LICENSE),
|
185 |
+
citation=_CITATION,
|
186 |
+
)
|
187 |
+
|
188 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
189 |
+
|
190 |
+
urls = _URLS[self.config.subset_id]
|
191 |
+
(
|
192 |
+
corpus_path,
|
193 |
+
pmids_train,
|
194 |
+
pmids_dev,
|
195 |
+
pmids_test,
|
196 |
+
) = dl_manager.download_and_extract(urls)
|
197 |
+
|
198 |
+
return [
|
199 |
+
datasets.SplitGenerator(
|
200 |
+
name=datasets.Split.TRAIN,
|
201 |
+
gen_kwargs={"corpus_path": corpus_path, "pmids_path": pmids_train},
|
202 |
+
),
|
203 |
+
datasets.SplitGenerator(
|
204 |
+
name=datasets.Split.TEST,
|
205 |
+
gen_kwargs={"corpus_path": corpus_path, "pmids_path": pmids_test},
|
206 |
+
),
|
207 |
+
datasets.SplitGenerator(
|
208 |
+
name=datasets.Split.VALIDATION,
|
209 |
+
gen_kwargs={"corpus_path": corpus_path, "pmids_path": pmids_dev},
|
210 |
+
),
|
211 |
+
]
|
212 |
+
|
213 |
+
def _generate_examples(self, corpus_path, pmids_path):
|
214 |
+
with open(pmids_path, encoding="utf8") as infile:
|
215 |
+
pmids = infile.readlines()
|
216 |
+
pmids = {int(x.strip()) for x in pmids}
|
217 |
+
|
218 |
+
if self.config.schema == "source":
|
219 |
+
with open(corpus_path, encoding="utf8") as corpus:
|
220 |
+
for document in self._generate_parsed_documents(corpus, pmids):
|
221 |
+
yield document["pmid"], document
|
222 |
+
|
223 |
+
elif self.config.schema == "bigbio_kb":
|
224 |
+
uid = it.count(0)
|
225 |
+
with open(corpus_path, encoding="utf8") as corpus:
|
226 |
+
for document in self._generate_parsed_documents(corpus, pmids):
|
227 |
+
document["id"] = next(uid)
|
228 |
+
document["document_id"] = document.pop("pmid")
|
229 |
+
|
230 |
+
entities_ = []
|
231 |
+
for entity in document["entities"]:
|
232 |
+
for type in entity["semantic_type_id"]:
|
233 |
+
entities_.append(
|
234 |
+
{
|
235 |
+
"id": next(uid),
|
236 |
+
"type": type,
|
237 |
+
"text": entity["text"],
|
238 |
+
"offsets": entity["offsets"],
|
239 |
+
"normalized": [
|
240 |
+
{
|
241 |
+
"db_name": "UMLS",
|
242 |
+
"db_id": entity["concept_id"],
|
243 |
+
}
|
244 |
+
],
|
245 |
+
}
|
246 |
+
)
|
247 |
+
document["entities"] = entities_
|
248 |
+
|
249 |
+
for passage in document["passages"]:
|
250 |
+
passage["id"] = next(uid)
|
251 |
+
document["relations"] = []
|
252 |
+
document["events"] = []
|
253 |
+
document["coreferences"] = []
|
254 |
+
yield document["document_id"], document
|
255 |
+
|
256 |
+
def _generate_parsed_documents(self, fstream, pmids):
|
257 |
+
for raw_document in self._generate_raw_documents(fstream):
|
258 |
+
if self._parse_pmid(raw_document) in pmids:
|
259 |
+
yield self._parse_document(raw_document)
|
260 |
+
|
261 |
+
def _generate_raw_documents(self, fstream):
|
262 |
+
raw_document = []
|
263 |
+
for line in fstream:
|
264 |
+
if line.strip():
|
265 |
+
raw_document.append(line.strip())
|
266 |
+
elif raw_document:
|
267 |
+
yield raw_document
|
268 |
+
raw_document = []
|
269 |
+
# needed for last document
|
270 |
+
if raw_document:
|
271 |
+
yield raw_document
|
272 |
+
|
273 |
+
def _parse_pmid(self, raw_document):
|
274 |
+
pmid, _ = raw_document[0].split("|", 1)
|
275 |
+
return int(pmid)
|
276 |
+
|
277 |
+
def _parse_document(self, raw_document):
|
278 |
+
pmid, type, title = raw_document[0].split("|", 2)
|
279 |
+
pmid_, type, abstract = raw_document[1].split("|", 2)
|
280 |
+
passages = [
|
281 |
+
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
|
282 |
+
{
|
283 |
+
"type": "abstract",
|
284 |
+
"text": [abstract],
|
285 |
+
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
|
286 |
+
},
|
287 |
+
]
|
288 |
+
|
289 |
+
entities = []
|
290 |
+
for line in raw_document[2:]:
|
291 |
+
(
|
292 |
+
pmid_,
|
293 |
+
start_idx,
|
294 |
+
end_idx,
|
295 |
+
mention,
|
296 |
+
semantic_type_id,
|
297 |
+
entity_id,
|
298 |
+
) = line.split("\t")
|
299 |
+
entity = {
|
300 |
+
"offsets": [[int(start_idx), int(end_idx)]],
|
301 |
+
"text": [mention],
|
302 |
+
"semantic_type_id": semantic_type_id.split(","),
|
303 |
+
"concept_id": entity_id,
|
304 |
+
}
|
305 |
+
entities.append(entity)
|
306 |
+
|
307 |
+
return {"pmid": int(pmid), "entities": entities, "passages": passages}
|