Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
vgaraujov commited on
Commit
1e05a11
·
verified ·
1 Parent(s): ad585a0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - af
4
+ - ar
5
+ - de
6
+ - en
7
+ - es
8
+ - ha
9
+ - hi
10
+ - id
11
+ - ig
12
+ - jv
13
+ - mr
14
+ - pcm
15
+ - pt
16
+ - ro
17
+ - ru
18
+ - rw
19
+ - su
20
+ - sv
21
+ - sw
22
+ - tt
23
+ - uk
24
+ - vmw
25
+ - xh
26
+ - yo
27
+ - zh
28
+ - zu
29
+ license: cc-by-4.0
30
+ ---
31
+
32
+ # BRIGHTER Emotion Categories Dataset
33
+
34
+ This dataset contains the emotion categories data from the BRIGHTER paper: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages.
35
+
36
+ ## Dataset Description
37
+
38
+ The BRIGHTER Emotion Categories dataset is a comprehensive multi-language, multi-label emotion classification dataset with separate configurations for each language. It represents one of the largest human-annotated emotion datasets across multiple languages.
39
+
40
+ - **Total languages**: 28 languages
41
+ - **Total examples**: 139595
42
+ - **Splits**: train, dev, test
43
+
44
+ ## About BRIGHTER
45
+
46
+ BRIGHTER addresses the gap in human-annotated textual emotion recognition datasets for low-resource languages. While most existing emotion datasets focus on English, BRIGHTER covers multiple languages, including many low-resource ones. The dataset was created by selecting text from various sources and having annotators label six categorical emotions: anger, disgust, fear, joy, sadness, and surprise.
47
+
48
+ The dataset contains text in the following languages: Afrikaans, Algerian Arabic, Moroccan Arabic, Mandarin Chinese, German, English, Spanish (Ecuador, Colombia, Mexico), Hausa, Hindi, Igbo, Indonesian, Javanese, Kinyarwanda, Marathi, Nigerian Pidgin, Portuguese (Brazil), Portuguese (Mozambique), Romanian, Russian, Sundanese, Swahili, Swedish, Tatar, Ukrainian, Makhuwa, Xhosa, Yoruba, and Zulu.
49
+
50
+ ## Language Configurations
51
+
52
+ Each language is available as a separate configuration with the following statistics:
53
+
54
+ | Original Code | ISO Code | Train Examples | Dev Examples | Test Examples | Total |
55
+ |---------------|----------|---------------|-------------|--------------|-------|
56
+ | afr | af | 1222 | 196 | 2130 | 3548 |
57
+ | arq | ar | 901 | 200 | 1804 | 2905 |
58
+ | ary | ar | 1608 | 534 | 1624 | 3766 |
59
+ | chn | zh | 2642 | 400 | 5284 | 8326 |
60
+ | deu | de | 2603 | 400 | 5208 | 8211 |
61
+ | eng | en | 2768 | 232 | 5534 | 8534 |
62
+ | esp | es | 1996 | 368 | 3390 | 5754 |
63
+ | hau | ha | 2145 | 712 | 2160 | 5017 |
64
+ | hin | hi | 2556 | 200 | 2020 | 4776 |
65
+ | ibo | ig | 2880 | 958 | 2888 | 6726 |
66
+ | ind | id | 0 | 156 | 851 | 1007 |
67
+ | jav | jv | 0 | 151 | 837 | 988 |
68
+ | kin | rw | 2451 | 814 | 2462 | 5727 |
69
+ | mar | mr | 2415 | 200 | 2000 | 4615 |
70
+ | pcm | pcm | 3728 | 1240 | 3740 | 8708 |
71
+ | ptbr | pt | 2226 | 400 | 4452 | 7078 |
72
+ | ptmz | pt | 1546 | 514 | 1552 | 3612 |
73
+ | ron | ro | 1241 | 246 | 2238 | 3725 |
74
+ | rus | ru | 2679 | 398 | 2000 | 5077 |
75
+ | sun | su | 924 | 398 | 1852 | 3174 |
76
+ | swa | sw | 3307 | 1102 | 3312 | 7721 |
77
+ | swe | sv | 1187 | 400 | 2376 | 3963 |
78
+ | tat | tt | 1000 | 400 | 2000 | 3400 |
79
+ | ukr | uk | 2466 | 498 | 4468 | 7432 |
80
+ | vmw | vmw | 1551 | 516 | 1554 | 3621 |
81
+ | xho | xh | 0 | 682 | 1594 | 2276 |
82
+ | yor | yo | 2992 | 994 | 3000 | 6986 |
83
+ | zul | zu | 0 | 875 | 2047 | 2922 |
84
+
85
+ ## Features
86
+
87
+ - **id**: Unique identifier for each example
88
+ - **text**: Text content to classify
89
+ - **anger**, **disgust**, **fear**, **joy**, **sadness**, **surprise**: Presence of emotion
90
+ - **emotions**: List of emotions present in the text
91
+
92
+ ## Dataset Characteristics
93
+
94
+ This dataset provides binary labels for emotion presence, making it suitable for multi-label classification tasks. For regression tasks or fine-grained emotion analysis, please see the companion BRIGHTER-emotion-intensities dataset.
95
+
96
+ ## Usage
97
+
98
+ ```python
99
+ from datasets import load_dataset
100
+
101
+ # Load all data for a specific language
102
+ eng_dataset = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng")
103
+
104
+ # Or load a specific split for a language
105
+ eng_train = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng", split="train")
106
+ ```
107
+
108
+ ## Citation
109
+
110
+ If you use this dataset, please cite the following papers:
111
+
112
+ ```
113
+ @misc{muhammad2025brighterbridginggaphumanannotated,
114
+ title={BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages},
115
+ author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad},
116
+ year={2025},
117
+ eprint={2502.11926},
118
+ archivePrefix={arXiv},
119
+ primaryClass={cs.CL},
120
+ url={https://arxiv.org/abs/2502.11926},
121
+ }
122
+ ```
123
+
124
+ ```
125
+ @misc{muhammad2025semeval2025task11bridging,
126
+ title={SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection},
127
+ author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad},
128
+ year={2025},
129
+ eprint={2503.07269},
130
+ archivePrefix={arXiv},
131
+ primaryClass={cs.CL},
132
+ url={https://arxiv.org/abs/2503.07269},
133
+ }
134
+ ```
135
+
136
+ ## License
137
+ This dataset is licensed under CC-BY 4.0.