divaroffical commited on
Commit
030e4fc
Β·
verified Β·
1 Parent(s): b2427bd

improve README file

Browse files
Files changed (1) hide show
  1. README.md +170 -3
README.md CHANGED
@@ -1,3 +1,170 @@
1
- ---
2
- license: odbl
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: odbl
3
+ ---
4
+
5
+ # 🏠 Divar Real Estate Ads Dataset
6
+
7
+ [![Dataset Size](https://img.shields.io/badge/Size-750%20MB-blue)](https://huggingface.co/datasets/divar/real-estate-ads)
8
+ [![Rows](https://img.shields.io/badge/Rows-1M-green)](https://huggingface.co/datasets/divar/real-estate-ads)
9
+ [![License](https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey)](https://creativecommons.org/licenses/by/4.0/)
10
+
11
+ ## πŸ“‹ Overview
12
+
13
+ The `real_estate_ads` dataset contains one million anonymized real estate advertisements collected from the [Divar](https://divar.ir) platform, one of the largest classified ads platforms in the Middle East. This comprehensive dataset provides researchers, data scientists, and entrepreneurs with authentic real estate market data to build innovative solutions such as price evaluation models, market analysis tools, and forecasting systems.
14
+
15
+
16
+ ## πŸ” Dataset Details
17
+
18
+ | Property | Value |
19
+ | --------------- | ------------------------------------------ |
20
+ | **Size** | 1,000,000 rows, approximately 750 MB |
21
+ | **Time Period** | Six-month period (2024) |
22
+ | **Source** | Anonymized real estate listings from Divar |
23
+ | **Format** | Tabular data (CSV/Parquet) with 57 columns |
24
+ | **Languages** | Mixed (primarily Persian) |
25
+ | **Domains** | Real Estate, Property Market |
26
+
27
+ ## πŸš€ Quick Start
28
+
29
+ ```python
30
+ # Load the dataset using the Hugging Face datasets library
31
+ from datasets import load_dataset
32
+
33
+ # Load the full dataset
34
+ dataset = load_dataset("divar/real-estate-ads")
35
+
36
+ # Print the first few examples
37
+ print(dataset['train'][:5])
38
+
39
+ # Get dataset statistics
40
+ print(f"Dataset size: {len(dataset['train'])} rows")
41
+ print(f"Features: {dataset['train'].features}")
42
+ ```
43
+
44
+ ## πŸ“Š Schema
45
+
46
+ The dataset includes comprehensive property information organized in the following categories:
47
+
48
+ ### 🏷️ Categorization
49
+
50
+ - `cat2_slug`, `cat3_slug`: Property categorization slugs
51
+ - `property_type`: Type of property (apartment, villa, land, etc.)
52
+
53
+ ### πŸ“ Location
54
+
55
+ - `city_slug`, `neighborhood_slug`: Location identifiers
56
+ - `location_latitude`, `location_longitude`: Geographic coordinates
57
+ - `location_radius`: Location accuracy radius
58
+
59
+ ### πŸ“ Listing Details
60
+
61
+ - `created_at_month`: Timestamp of when the ad was created
62
+ - `user_type`: Type of user who posted the listing (individual, agency, etc.)
63
+ - `description`, `title`: Textual information about the property
64
+
65
+ ### πŸ’° Financial Information
66
+
67
+ - **Rent-related**: `rent_mode`, `rent_value`, `rent_to_single`, `rent_type`
68
+ - **Price-related**: `price_mode`, `price_value`
69
+ - **Credit-related**: `credit_mode`, `credit_value`
70
+ - **Transformed values**: Various transformed financial metrics for analysis
71
+
72
+ ### 🏒 Property Specifications
73
+
74
+ - `land_size`, `building_size`: Property dimensions (in square meters)
75
+ - `deed_type`, `has_business_deed`: Legal property information
76
+ - `floor`, `rooms_count`, `total_floors_count`, `unit_per_floor`: Building structure details
77
+ - `construction_year`, `is_rebuilt`: Age and renovation status
78
+
79
+ ### πŸ›‹οΈ Amenities and Features
80
+
81
+ - **Utilities**: `has_water`, `has_electricity`, `has_gas`
82
+ - **Climate control**: `has_heating_system`, `has_cooling_system`
83
+ - **Facilities**: `has_balcony`, `has_elevator`, `has_warehouse`, `has_parking`
84
+ - **Luxury features**: `has_pool`, `has_jacuzzi`, `has_sauna`
85
+ - **Other features**: `has_security_guard`, `has_barbecue`, `building_direction`, `floor_material`
86
+
87
+ ### 🏨 Short-term Rental Information
88
+
89
+ - `regular_person_capacity`, `extra_person_capacity`
90
+ - `cost_per_extra_person`
91
+ - **Pricing variations**: `rent_price_on_regular_days`, `rent_price_on_special_days`, `rent_price_at_weekends`
92
+
93
+ ## πŸ“ˆ Example Analysis
94
+
95
+ ```python
96
+ import pandas as pd
97
+ import matplotlib.pyplot as plt
98
+ import seaborn as sns
99
+
100
+ # Convert to pandas DataFrame for analysis
101
+ df = dataset['train'].to_pandas()
102
+
103
+ # Price distribution by property type
104
+ plt.figure(figsize=(12, 6))
105
+ sns.boxplot(x='property_type', y='price_value', data=df)
106
+ plt.title('Price Distribution by Property Type')
107
+ plt.xticks(rotation=45)
108
+ plt.tight_layout()
109
+ plt.show()
110
+
111
+ # Correlation between building size and price
112
+ plt.figure(figsize=(10, 6))
113
+ sns.scatterplot(x='building_size', y='price_value', data=df)
114
+ plt.title('Correlation between Building Size and Price')
115
+ plt.xlabel('Building Size (sq.m)')
116
+ plt.ylabel('Price')
117
+ plt.tight_layout()
118
+ plt.show()
119
+ ```
120
+
121
+ ## πŸ’‘ Use Cases
122
+
123
+ This dataset is particularly valuable for:
124
+
125
+ 1. **Price Prediction Models**: Train algorithms to estimate property values based on features
126
+
127
+ ```python
128
+ # Example: Simple price prediction model
129
+ from sklearn.ensemble import RandomForestRegressor
130
+ from sklearn.model_selection import train_test_split
131
+
132
+ features = ['building_size', 'rooms_count', 'construction_year', 'has_parking']
133
+ X = df[features].fillna(0)
134
+ y = df['price_value'].fillna(0)
135
+
136
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
137
+ model = RandomForestRegressor(n_estimators=100)
138
+ model.fit(X_train, y_train)
139
+ ```
140
+
141
+ 2. **Market Analysis**: Understand trends and patterns in the real estate market
142
+ 3. **Recommendation Systems**: Build tools to suggest properties based on user preferences
143
+ 4. **Natural Language Processing**: Analyze property descriptions and titles
144
+ 5. **Geospatial Analysis**: Study location-based pricing and property distribution
145
+
146
+ ## πŸ”§ Data Processing Information
147
+
148
+ The data has been:
149
+
150
+ - Anonymized to protect privacy
151
+ - Randomly sampled from the complete Divar platform dataset
152
+ - Cleaned with select columns removed to ensure privacy and usability
153
+ - Standardized to ensure consistency across entries
154
+
155
+ ## πŸ“š Citation and Usage
156
+
157
+ When using this dataset in your research or applications, please consider acknowledging the source:
158
+
159
+ ```bibtex
160
+ @dataset{divar2025realestate,
161
+ author = {Divar Corporation},
162
+ title = {Real Estate Ads Dataset from Divar Platform},
163
+ year = {2025},
164
+ publisher = {Hugging Face},
165
+ url = {https://huggingface.co/datasets/divar/real-estate-ads}
166
+ }
167
+ ```
168
+ ## 🀝 Contributing
169
+
170
+ We welcome contributions to improve this dataset! If you find issues or have suggestions, please open an issue on the [GitHub repository](https://github.com/divar-ir/kenar-docs) or contact us at [[email protected]](mailto:[email protected]).