Kleber commited on
Commit
d9dd8fe
·
1 Parent(s): 2711ce7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -32
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  license: cc-by-2.0
3
  task_categories:
4
  - translation
@@ -9,67 +10,65 @@ size_categories:
9
  - 10K<n<100K
10
  ---
11
 
 
12
  # Dataset Card for Dataset Name
13
 
14
  ## Dataset Description
15
 
16
- - **Homepage:**
17
- - **Repository:**
18
  - **Data Format:** TSV
19
- - **Data Source:** [Source of the data, e.g., web scraping, surveys]
20
- - **Point of Contact:**
21
- ### Dataset Summary
22
 
23
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
 
24
 
25
 
26
 
27
  ### Data Instances
28
 
29
- [More Information Needed]
 
 
30
 
31
  ### Data Fields
32
 
33
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
34
 
35
  ### Data Splits
36
 
37
- - **Training Data:** [Description of the training data split]
38
- - **Validation Data:** [Description of the validation data split]
39
- - **Test Data:** [Description of the test data split]
40
- [More Information Needed]
41
 
42
  ## Data Preprocessing
43
 
44
- - **Data Cleaning:** [Description of any data cleaning or preprocessing steps]
45
- - **Data Transformation:** [Details on how the data was transformed, if applicable]
46
- - **Data Splitting:** [Information about how the data was split into training, validation, and test sets]
47
 
48
  ## Data Collection
49
 
50
- - **Data Collection Process:** [Description of how the data was collected]
51
- - **Data Sources:** [List of sources used to collect the data]
52
- - **Data Annotations:** [Details about any annotations or labels in the dataset]
53
-
54
- ## Dataset Creation
55
-
56
- ### Curation Rationale
57
-
58
- [More Information Needed]
59
 
60
- ### Source Data
 
 
 
61
 
62
- #### Initial Data Collection and Normalization
63
 
64
 
65
- [More Information Needed]
66
 
67
- ### Annotations
68
-
69
- #### Annotation process
70
 
71
- [More Information Needed]
72
 
73
- #### Who are the annotators?
74
 
75
 
 
1
  ---
2
+ ---
3
  license: cc-by-2.0
4
  task_categories:
5
  - translation
 
10
  - 10K<n<100K
11
  ---
12
 
13
+
14
  # Dataset Card for Dataset Name
15
 
16
  ## Dataset Description
17
 
18
+ - **Repository:**[link](https://github.com/Digital-Umuganda/twb_nllb_project_tourism_education) to the GitHub repository containing the code for training the model on this data, and the code for the collection of the monolingual data.
 
19
  - **Data Format:** TSV
20
+ - **Model:** huggingface [model link](mbazaNLP/Nllb_finetuned_education_en_kin).
 
 
21
 
22
+
23
+ ### Dataset Summary
24
 
25
 
26
 
27
  ### Data Instances
28
 
29
+ ```
30
+ 118347 103384 And their ideas was that the teachers just didn't care and had no time for them. Kandi igitekerezo cyabo nuko abarimu batabitayeho gusa kandi ntibabone umwanya. 2023-06-25 09:40:28 223 1 3 education coursera 72-93
31
+ ```
32
 
33
  ### Data Fields
34
 
35
+ - id
36
+ - source_id
37
+ - source
38
+ - phrase
39
+ - timestamp
40
+ - user_id
41
+ - validation_state
42
+ - validation_score
43
+ - domain
44
+ - source_files
45
+ - str_ranges
46
 
47
  ### Data Splits
48
 
49
+ - **Training Data:** 58251
50
+ - **Validation Data:** 2456
51
+ - **Test Data:** 1060
 
52
 
53
  ## Data Preprocessing
54
 
55
+ - **Data Splitting:** To create a test set; all data sources are equally represented in terms of the number of sentences contributed to the test dataset. In terms of sentence length, the test set distribution is similar to the sentence length distribution of the whole dataset. After picking the test set, from the remaining data the train and validation data are split using sklearn's [train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html).
 
 
56
 
57
  ## Data Collection
58
 
59
+ - **Data Collection Process:** The monolingual source sentences were obtained through web-scraping of several websites containing English sentences.
 
 
 
 
 
 
 
 
60
 
61
+ - **Data Sources:**
62
+ - Coursera
63
+ - Atingi
64
+ - Wikipedia
65
 
 
66
 
67
 
 
68
 
69
+ ## Dataset Creation
 
 
70
 
71
+ After collecting the monolingual dataset, human translators were employed to produce translations for the collected sentences. To ensure quality, each sentence was translated more than once, and each generated translation was assigned **validation_score** that was used to pick the best translation. The test dataset was further revised to remove or correct sentences with faulty translations.
72
 
 
73
 
74