Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
463850b
·
verified ·
1 Parent(s): 86facd2

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +160 -0
README.md CHANGED
@@ -1,4 +1,28 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: amh
4
  features:
@@ -313,4 +337,140 @@ configs:
313
  path: yor/validation-*
314
  - split: test
315
  path: yor/test-*
 
 
 
316
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - amh
6
+ - arq
7
+ - ary
8
+ - hau
9
+ - ibo
10
+ - kin
11
+ - pcm
12
+ - por
13
+ - swa
14
+ - tso
15
+ - twi
16
+ - yor
17
+ license: cc-by-4.0
18
+ multilinguality: multilingual
19
+ task_categories:
20
+ - text-classification
21
+ task_ids:
22
+ - sentiment-analysis
23
+ - sentiment-scoring
24
+ - sentiment-classification
25
+ - hate-speech-detection
26
  dataset_info:
27
  - config_name: amh
28
  features:
 
337
  path: yor/validation-*
338
  - split: test
339
  path: yor/test-*
340
+ tags:
341
+ - mteb
342
+ - text
343
  ---
344
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
345
+
346
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
347
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">AfriSentiClassification</h1>
348
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
349
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
350
+ </div>
351
+
352
+ AfriSenti is the largest sentiment analysis dataset for under-represented African languages.
353
+
354
+ | | |
355
+ |---------------|---------------------------------------------|
356
+ | Task category | t2c |
357
+ | Domains | Social, Written |
358
+ | Reference | https://arxiv.org/abs/2302.08956 |
359
+
360
+
361
+ ## How to evaluate on this task
362
+
363
+ You can evaluate an embedding model on this dataset using the following code:
364
+
365
+ ```python
366
+ import mteb
367
+
368
+ task = mteb.get_tasks(["AfriSentiClassification"])
369
+ evaluator = mteb.MTEB(task)
370
+
371
+ model = mteb.get_model(YOUR_MODEL)
372
+ evaluator.run(model)
373
+ ```
374
+
375
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
376
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
377
+
378
+ ## Citation
379
+
380
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
381
+
382
+ ```bibtex
383
+
384
+ @inproceedings{Muhammad2023AfriSentiAT,
385
+ author = {Shamsuddeen Hassan Muhammad and Idris Abdulmumin and Abinew Ali Ayele and Nedjma Ousidhoum and David Ifeoluwa Adelani and Seid Muhie Yimam and Ibrahim Sa'id Ahmad and Meriem Beloucif and Saif Mohammad and Sebastian Ruder and Oumaima Hourrane and Pavel Brazdil and Felermino D'ario M'ario Ant'onio Ali and Davis Davis and Salomey Osei and Bello Shehu Bello and Falalu Ibrahim and Tajuddeen Gwadabe and Samuel Rutunda and Tadesse Belay and Wendimu Baye Messelle and Hailu Beshada Balcha and Sisay Adugna Chala and Hagos Tesfahun Gebremichael and Bernard Opoku and Steven Arthur},
386
+ title = {AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages},
387
+ year = {2023},
388
+ }
389
+
390
+
391
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
392
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
393
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
394
+ publisher = {arXiv},
395
+ journal={arXiv preprint arXiv:2502.13595},
396
+ year={2025},
397
+ url={https://arxiv.org/abs/2502.13595},
398
+ doi = {10.48550/arXiv.2502.13595},
399
+ }
400
+
401
+ @article{muennighoff2022mteb,
402
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
403
+ title = {MTEB: Massive Text Embedding Benchmark},
404
+ publisher = {arXiv},
405
+ journal={arXiv preprint arXiv:2210.07316},
406
+ year = {2022}
407
+ url = {https://arxiv.org/abs/2210.07316},
408
+ doi = {10.48550/ARXIV.2210.07316},
409
+ }
410
+ ```
411
+
412
+ # Dataset Statistics
413
+ <details>
414
+ <summary> Dataset Statistics</summary>
415
+
416
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
417
+
418
+ ```python
419
+ import mteb
420
+
421
+ task = mteb.get_task("AfriSentiClassification")
422
+
423
+ desc_stats = task.metadata.descriptive_stats
424
+ ```
425
+
426
+ ```json
427
+ {
428
+ "test": {
429
+ "num_samples": 18222,
430
+ "number_of_characters": 1378570,
431
+ "number_texts_intersect_with_train": 595,
432
+ "min_text_length": 6,
433
+ "average_text_length": 75.65415431895511,
434
+ "max_text_length": 414,
435
+ "unique_text": 18222,
436
+ "unique_labels": 3,
437
+ "labels": {
438
+ "0": {
439
+ "count": 9206
440
+ },
441
+ "2": {
442
+ "count": 3876
443
+ },
444
+ "1": {
445
+ "count": 5140
446
+ }
447
+ }
448
+ },
449
+ "train": {
450
+ "num_samples": 63685,
451
+ "number_of_characters": 5446582,
452
+ "number_texts_intersect_with_train": null,
453
+ "min_text_length": 1,
454
+ "average_text_length": 85.52378111015153,
455
+ "max_text_length": 771,
456
+ "unique_text": 62635,
457
+ "unique_labels": 3,
458
+ "labels": {
459
+ "2": {
460
+ "count": 20108
461
+ },
462
+ "1": {
463
+ "count": 22794
464
+ },
465
+ "0": {
466
+ "count": 20783
467
+ }
468
+ }
469
+ }
470
+ }
471
+ ```
472
+
473
+ </details>
474
+
475
+ ---
476
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*