diff --git a/scripts/run_1.14G_dp128_tp2_pp1_acc1_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp128_tp2_pp1_acc1_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a1224aa1d1388fb3522a37c66b81c9d224d6b0ce --- /dev/null +++ b/scripts/run_1.14G_dp128_tp2_pp1_acc1_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp128_tp2_pp1_acc1_mbs4_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp128_tp2_pp1_acc1_mbs4_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp32_pp1_acc32_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp32_pp1_acc32_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..28bb97c861de19ddabd135f873db6fd9c7219bc3 --- /dev/null +++ b/scripts/run_1.14G_dp16_tp32_pp1_acc32_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp32_pp1_acc32_mbs1_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp32_pp1_acc32_mbs1_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp16_pp1_acc64_mbs1_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp2_tp16_pp1_acc64_mbs1_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..582951abe257273074163f98fb58cc94a96f23cc --- /dev/null +++ b/scripts/run_1.14G_dp2_tp16_pp1_acc64_mbs1_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp16_pp1_acc64_mbs1_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp16_pp1_acc64_mbs1_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp256_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp2_tp256_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6eb7ec0af835c3ad3ac351463e0fd0657f58a661 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp256_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp256_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp256_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp4_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp2_tp4_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..4446a0a9dde72d703e759191e55011a09a058735 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp4_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp4_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp4_pp1_acc4_mbs16_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp4_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp4_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..cdea7cb9143b8a18b58b94b577fe519517b3995c --- /dev/null +++ b/scripts/run_1.14G_dp2_tp4_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp4_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp4_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp16_pp1_acc4_mbs1_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp16_pp1_acc4_mbs1_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..27d37b412764f7c671cd0615a5efcccbeb0385bc --- /dev/null +++ b/scripts/run_1.14G_dp32_tp16_pp1_acc4_mbs1_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp16_pp1_acc4_mbs1_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp16_pp1_acc4_mbs1_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..d7b0982fa53598c55461ec95a878fa287a977243 --- /dev/null +++ b/scripts/run_1.14G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp4_pp1_acc64_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp4_pp1_acc64_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..baa80479170ac7e41e233e586aa8664dfdebdfda --- /dev/null +++ b/scripts/run_1.14G_dp32_tp4_pp1_acc64_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp4_pp1_acc64_mbs1_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp4_pp1_acc64_mbs1_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp128_pp1_acc1_mbs32_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp4_tp128_pp1_acc1_mbs32_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..dfa976ad44a6c18ba4f33c767f327dc07bdc15b6 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp128_pp1_acc1_mbs32_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp128_pp1_acc1_mbs32_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp128_pp1_acc1_mbs32_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp16_pp1_acc256_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp4_tp16_pp1_acc256_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f347462543d6c5015cbea42a7f26ff3b0292cec3 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp16_pp1_acc256_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp16_pp1_acc256_mbs2_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp16_pp1_acc256_mbs2_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp32_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp4_tp32_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..707ed3d3b59ebb7b4b7538984a7407ec8bc4d0e9 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp32_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp32_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp32_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp1_pp2_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp8_tp1_pp2_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..acbbffb244efa72820f70f735f9d32bf6e4f52b8 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp1_pp2_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp1_pp2_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp1_pp2_acc32_mbs8_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp32_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp32_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b984236dd0f822bd57e770028409dad25110d535 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp32_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp32_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp32_pp1_acc16_mbs4_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp64_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp64_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8400adae390cd907e3053ba7894a1eef1444bcd3 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp64_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp64_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp64_pp1_acc1_mbs16_seq8192_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.34G_dp16_tp4_pp1_acc2_mbs4_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp4_pp1_acc2_mbs4_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..171f2145e4906fb67fb3fa6c5981bf15a5b6b487 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp4_pp1_acc2_mbs4_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp4_pp1_acc2_mbs4_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp4_pp1_acc2_mbs4_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..fa71357b0a18abc5e5eb261f91488ed104cc8ed1 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp4_pp2_acc1_mbs16_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp16_tp8_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp8_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..7744b2fc9ee5eb721477bacbfcb605cd29e235cc --- /dev/null +++ b/scripts/run_1.34G_dp16_tp8_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp8_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp8_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp1_tp16_pp4_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp1_tp16_pp4_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1c8aec30b8c0c15929fa6bd46a3f6b3f97d0b489 --- /dev/null +++ b/scripts/run_1.34G_dp1_tp16_pp4_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp1_tp16_pp4_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp16_pp4_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp128_pp1_acc128_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp128_pp1_acc128_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..55b95553be398f007480e5c18d6fb0961c66d534 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp128_pp1_acc128_mbs8_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp128_pp1_acc128_mbs8_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp128_pp1_acc128_mbs8_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp16_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp16_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b456032590b2d0d1b6c7fcb548e45baca33ac8f8 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp16_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp16_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp16_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp256_pp1_acc128_mbs2_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp256_pp1_acc128_mbs2_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..58b9300d312ff5c6f61530273234fb1984b17cda --- /dev/null +++ b/scripts/run_1.34G_dp2_tp256_pp1_acc128_mbs2_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp256_pp1_acc128_mbs2_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp256_pp1_acc128_mbs2_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp32_pp1_acc256_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp32_pp1_acc256_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..301bc631b4ac45951c4e0d2847fe819473928648 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp32_pp1_acc256_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp32_pp1_acc256_mbs1_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp32_pp1_acc256_mbs1_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp4_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp4_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..99d95692e34e6420f6de93797724fdf04104c944 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp4_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp4_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp4_pp1_acc256_mbs4_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..498089ff39f17d0752a1fc9ca99a9fb67146eab7 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp4_pp1_acc8.0_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9a93a857476987311a02af5441a9603d9d7a4d15 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp4_pp2_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp32_tp16_pp1_acc2_mbs2_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp32_tp16_pp1_acc2_mbs2_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..24783ee16cb839d20952507682088ed736cbf794 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp16_pp1_acc2_mbs2_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp16_pp1_acc2_mbs2_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp16_pp1_acc2_mbs2_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..bdc2479809211e9e6518153b2a5bbb1bf5eb9a80 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp2_pp1_acc16_mbs4_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp32_tp4_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp32_tp4_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..3ceb7e16bd73b182ed132ecdaaaf57c762d0e4bc --- /dev/null +++ b/scripts/run_1.34G_dp32_tp4_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp4_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp4_pp1_acc32_mbs2_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0938cef862ed460e4a37738c697177bf09db79ad --- /dev/null +++ b/scripts/run_1.34G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp2_pp1_acc32_mbs16_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp4_tp2_pp1_acc32_mbs16_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..3d0401713b457a07a20d95d6417b2cb543505a2b --- /dev/null +++ b/scripts/run_1.34G_dp4_tp2_pp1_acc32_mbs16_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp2_pp1_acc32_mbs16_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp2_pp1_acc32_mbs16_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c3ee371f9646c092be721336c502538ced692eb --- /dev/null +++ b/scripts/run_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp32_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp4_tp8_pp1_acc2_mbs256_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp8_pp1_acc2_mbs256_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9ad755c76ece19bf1a27d071faaef34d1cd3b8a8 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp8_pp1_acc2_mbs256_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp8_pp1_acc2_mbs256_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp8_pp1_acc2_mbs256_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp8_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp8_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e80bc112cce34cd47fc1947ab26a09496aefd075 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp8_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp8_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp8_pp1_acc32_mbs1_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp4_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..63bc53430092e291162d148f0c77e3df1efa73d2 --- /dev/null +++ b/scripts/run_1.34G_dp4_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp8_pp1_acc8_mbs16_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp64_tp8_pp1_acc8_mbs1_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp64_tp8_pp1_acc8_mbs1_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..d1813bc172f85ed931de9913945866c902ce06bf --- /dev/null +++ b/scripts/run_1.34G_dp64_tp8_pp1_acc8_mbs1_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp64_tp8_pp1_acc8_mbs1_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp64_tp8_pp1_acc8_mbs1_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e26cac1dcb89bcf343851b0dbe5867f15c9d1e82 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp16_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp8_tp32_pp1_acc1_mbs64_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp32_pp1_acc1_mbs64_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..169339a4d074df1297d1d3ae0bed9263c33cf661 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp32_pp1_acc1_mbs64_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp32_pp1_acc1_mbs64_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp32_pp1_acc1_mbs64_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp32_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp8_tp32_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..7ff8502a2b77fcfa4661c131ad265058736fa7d6 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp32_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp32_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp32_pp1_acc2_mbs8_seq32768_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp4_pp1_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp4_pp1_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..39ed8238df7b88136eaf346c63fa790f7051b727 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp4_pp1_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp4_pp1_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp4_pp1_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp64_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp8_tp64_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..afc1536ca033e62d7e53305791f20093062f1904 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp64_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp64_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp64_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp8_pp1_acc256_mbs1_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp8_tp8_pp1_acc256_mbs1_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a06a861eb2aa7746a060ff0db8c175bf7c60ee04 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp8_pp1_acc256_mbs1_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp8_pp1_acc256_mbs1_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp8_pp1_acc256_mbs1_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_11.4G_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.sh b/scripts/run_11.4G_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.sh new file mode 100644 index 0000000000000000000000000000000000000000..5d0cd5f0fb4e80dcdf9395768018ffce4a8fb099 --- /dev/null +++ b/scripts/run_11.4G_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_11.4G_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_11.4G_dp128_tp1_pp1_acc4_mbs2_seq4096_zero0_l42_h4096_heads32.yaml diff --git a/scripts/run_235M_dp8_tp1_pp1_acc1_mbs1_seq4096_zero0_l12_h1024_heads16.sh b/scripts/run_235M_dp8_tp1_pp1_acc1_mbs1_seq4096_zero0_l12_h1024_heads16.sh new file mode 100644 index 0000000000000000000000000000000000000000..40328f16b54d0454dcab2bd7548a19ae6b53f161 --- /dev/null +++ b/scripts/run_235M_dp8_tp1_pp1_acc1_mbs1_seq4096_zero0_l12_h1024_heads16.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_235M_dp8_tp1_pp1_acc1_mbs1_seq4096_zero0_l12_h1024_heads16 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_235M_dp8_tp1_pp1_acc1_mbs1_seq4096_zero0_l12_h1024_heads16.yaml diff --git a/scripts/run_3.27G_dp1_tp16_pp32_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.sh b/scripts/run_3.27G_dp1_tp16_pp32_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.sh new file mode 100644 index 0000000000000000000000000000000000000000..27e9630bc2cd0b32c820b6e7746f6faff59cc614 --- /dev/null +++ b/scripts/run_3.27G_dp1_tp16_pp32_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_3.27G_dp1_tp16_pp32_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_3.27G_dp1_tp16_pp32_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.yaml diff --git a/scripts/run_3.56G_dp8_tp8_pp1_acc1_mbs32_seq4096_zero1_l28_h3072_heads24.sh b/scripts/run_3.56G_dp8_tp8_pp1_acc1_mbs32_seq4096_zero1_l28_h3072_heads24.sh new file mode 100644 index 0000000000000000000000000000000000000000..504e21fbd50fd1f36e342bac110c231ec9501cf8 --- /dev/null +++ b/scripts/run_3.56G_dp8_tp8_pp1_acc1_mbs32_seq4096_zero1_l28_h3072_heads24.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_3.56G_dp8_tp8_pp1_acc1_mbs32_seq4096_zero1_l28_h3072_heads24 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_3.56G_dp8_tp8_pp1_acc1_mbs32_seq4096_zero1_l28_h3072_heads24.yaml diff --git a/scripts/run_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9c89df95ee5b7ff78505210bbd60c46e15a63781 --- /dev/null +++ b/scripts/run_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp16_tp2_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp1_tp16_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp1_tp16_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f150ef1f98207438f95062874a8099de7805763c --- /dev/null +++ b/scripts/run_3.57G_dp1_tp16_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_3.57G_dp1_tp16_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp16_pp2_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..922a34b0d2898fad1a473a6f88cb17ea9b3401f3 --- /dev/null +++ b/scripts/run_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp4_pp16_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache.sh b/scripts/run_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache.sh new file mode 100644 index 0000000000000000000000000000000000000000..d97927a8ff211d076cc17eb7b27542f95d574f04 --- /dev/null +++ b/scripts/run_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp8_pp1_acc1_mbs8_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml +fi diff --git a/scripts/run_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..766f5eef703452bb76040eba7b1e201c9f08c112 --- /dev/null +++ b/scripts/run_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp4_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8e953f2ae1d8fd938d53f49b1e009423f339f05c --- /dev/null +++ b/scripts/run_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp8_pp16_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b02f75fe008e160409aca2695d392daddbc1b72b --- /dev/null +++ b/scripts/run_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp2_tp8_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c5183140b587644298ccce1db6c6a3511d00f098 --- /dev/null +++ b/scripts/run_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp32_tp4_pp1_acc1_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a1c46aa5f152c0717c2791366b543a38096634f7 --- /dev/null +++ b/scripts/run_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp4_tp4_pp8_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp8_tp2_pp2_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp8_tp2_pp2_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..5559a322721a25c92ce6afdfeafff30b3529eb9a --- /dev/null +++ b/scripts/run_3.57G_dp8_tp2_pp2_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_3.57G_dp8_tp2_pp2_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp8_tp2_pp2_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache.sh b/scripts/run_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache.sh new file mode 100644 index 0000000000000000000000000000000000000000..622fce3eb6ae628020dc998ca0088bd3d15f8837 --- /dev/null +++ b/scripts/run_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.8G_dp1_tp1_pp32_acc31_mbs5_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml +fi diff --git a/scripts/run_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache.sh b/scripts/run_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache.sh new file mode 100644 index 0000000000000000000000000000000000000000..40e6cb83f1a097d7ba5890679aa5dffd65526d21 --- /dev/null +++ b/scripts/run_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=4 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.8G_dp1_tp1_pp4_acc32_mbs2_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml +fi diff --git a/scripts/run_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8.sh b/scripts/run_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8.sh new file mode 100644 index 0000000000000000000000000000000000000000..3da6754f989b2491127863028951b7693f91220c --- /dev/null +++ b/scripts/run_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8 # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp16_tp4_pp4_acc16_mbs1_seq4096_zero0_tpmodeRED_vocab131k_gqa8.yaml +fi diff --git a/scripts/run_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a0725ddffc140b6765752e785514451794a20d8e --- /dev/null +++ b/scripts/run_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp32_tp8_pp2_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..284510f07e9456e67e03ea1f0d0eedacf05f3f6b --- /dev/null +++ b/scripts/run_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..2f98913aed34a2c7e6d043a8a75a8bef30f084c6 --- /dev/null +++ b/scripts/run_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp16_tp8_pp1_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp1_tp1_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp1_tp1_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b3f2d88cb71d56d35ddd80f790ff1e80f4585ac4 --- /dev/null +++ b/scripts/run_8.86G_dp1_tp1_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_8.86G_dp1_tp1_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp1_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_8.86G_dp1_tp2_pp4_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp1_tp2_pp4_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6299db7d7b85b160c806f94cc4d4bdd0f470e15c --- /dev/null +++ b/scripts/run_8.86G_dp1_tp2_pp4_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_8.86G_dp1_tp2_pp4_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp2_pp4_acc16_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a44c23bf94ef6ce0671981b49912d0d3d407f2c0 --- /dev/null +++ b/scripts/run_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp256_tp1_pp1_acc1_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..fc9b849915f3958b232505938c9c2f78ad4d8299 --- /dev/null +++ b/scripts/run_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp32_tp4_pp4_acc8_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..757dfd02c3dccab27498d1a92d7eeba0c0cbc9ca --- /dev/null +++ b/scripts/run_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp16_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1cce3f0e11b94e04c341ea49298a63c6e7a54829 --- /dev/null +++ b/scripts/run_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp16_pp4_acc8_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a2dcc78d508a1477cc462ebb0ef8c65cd1fee8f4 --- /dev/null +++ b/scripts/run_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp2_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..d880e7797b695a2a48b989d0168070d93caf0989 --- /dev/null +++ b/scripts/run_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp4_pp4_acc64_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..4c887c21c0cc8bc5e5a4b6b3804c9d47036ee4aa --- /dev/null +++ b/scripts/run_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp4_pp8_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c55ef157d7e3cdd4d0a563e1e58dd86ff3cd32e2 --- /dev/null +++ b/scripts/run_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp8_tp2_pp16_acc32_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e58ed67f45de205b3737eae407eba85a34aa144f --- /dev/null +++ b/scripts/run_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp16_tp1_pp8_acc16_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..188ea7c174aad59ea65b6eb6fe72ce618acd3334 --- /dev/null +++ b/scripts/run_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp4_tp32_pp1_acc16_mbs4_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..499a17534fdbb446b8d11f3c3a448b2a7f2bafa1 --- /dev/null +++ b/scripts/run_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp8_tp1_pp4_acc32_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi