diff --git a/scripts/run_1.14G_dp16_tp16_pp1_acc2_mbs16_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp16_tp16_pp1_acc2_mbs16_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..317685c5bafbb104d41a7c9f27cb76ac41d27f76 --- /dev/null +++ b/scripts/run_1.14G_dp16_tp16_pp1_acc2_mbs16_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp16_pp1_acc2_mbs16_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp16_pp1_acc2_mbs16_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp1_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp1_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a6d5aa387ceace7cefaf806c5b325244e3e6b9cd --- /dev/null +++ b/scripts/run_1.14G_dp16_tp1_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp1_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp1_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp1_pp1_acc2_mbs4_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp1_pp1_acc2_mbs4_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..2e95a7c5a7ff858528c1894adb2a5e5fa40f8d1c --- /dev/null +++ b/scripts/run_1.14G_dp16_tp1_pp1_acc2_mbs4_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp1_pp1_acc2_mbs4_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp1_pp1_acc2_mbs4_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp32_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp32_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..4be79e7516f45fbee3f633410ccba7ee23434495 --- /dev/null +++ b/scripts/run_1.14G_dp16_tp32_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp32_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp32_pp1_acc128_mbs1_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e3821a073aa69fd1b3da91661ae671c6efeec5a0 --- /dev/null +++ b/scripts/run_1.14G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp4_pp1_acc1_mbs128_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..43bafc24edce9f74deaa7d8ebd8d82187538d704 --- /dev/null +++ b/scripts/run_1.14G_dp16_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp4_pp1_acc1_mbs2_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b03a1920ca77d25a8b3dd106256d4ee7bc00116d --- /dev/null +++ b/scripts/run_1.14G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp16_tp8_pp1_acc1_mbs32_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp128_pp1_acc128_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp128_pp1_acc128_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..482bddb451136393cf8b67577344902efffa81e3 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp128_pp1_acc128_mbs2_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp128_pp1_acc128_mbs2_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp128_pp1_acc128_mbs2_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp256_pp1_acc8_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp256_pp1_acc8_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9ad6f265c84e6e788e7655a392a6f3323d380189 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp256_pp1_acc8_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp256_pp1_acc8_mbs8_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp256_pp1_acc8_mbs8_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp32_pp1_acc16_mbs4_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp32_pp1_acc16_mbs4_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0dd39a663939d203bfe4c345a02669890ae68d52 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp32_pp1_acc16_mbs4_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp32_pp1_acc16_mbs4_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp32_pp1_acc16_mbs4_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp32_pp1_acc4_mbs64_seq8192_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp32_pp1_acc4_mbs64_seq8192_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1621bb63529670622cb8f75cfba2d8a062250456 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp32_pp1_acc4_mbs64_seq8192_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp32_pp1_acc4_mbs64_seq8192_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp32_pp1_acc4_mbs64_seq8192_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp4_pp1_acc16_mbs16_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp4_pp1_acc16_mbs16_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0850dee4d372e021fbdf90cf723f57f4e26cdfa1 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp4_pp1_acc16_mbs16_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp4_pp1_acc16_mbs16_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp4_pp1_acc16_mbs16_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp64_pp1_acc32_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp64_pp1_acc32_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a487cd812d706a7e97b19c1e7b15a7d0e7ed4452 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp64_pp1_acc32_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp64_pp1_acc32_mbs32_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp64_pp1_acc32_mbs32_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp2_tp8_pp1_acc4_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp2_tp8_pp1_acc4_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..fb2f27578cb99990451a481fbd51074ef3e9c3f4 --- /dev/null +++ b/scripts/run_1.14G_dp2_tp8_pp1_acc4_mbs16_seq8192_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp2_tp8_pp1_acc4_mbs16_seq8192_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp2_tp8_pp1_acc4_mbs16_seq8192_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp16_pp1_acc32_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp16_pp1_acc32_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..7dfd303890ae74f3c8b0441f26d2d35a2dccfabd --- /dev/null +++ b/scripts/run_1.14G_dp32_tp16_pp1_acc32_mbs2_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp16_pp1_acc32_mbs2_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp16_pp1_acc32_mbs2_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..81a3cf5e2a04a52297d143c3d9c43e58247f39b8 --- /dev/null +++ b/scripts/run_1.14G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp8_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp8_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9206f35f2ba44be0d7581141664e0936b09e58a2 --- /dev/null +++ b/scripts/run_1.14G_dp32_tp8_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp8_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp8_pp1_acc16_mbs1_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp32_tp8_pp1_acc1_mbs16_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp32_tp8_pp1_acc1_mbs16_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..90f68c26df37a1a5a9fcc06a54b9a83a61a52d9e --- /dev/null +++ b/scripts/run_1.14G_dp32_tp8_pp1_acc1_mbs16_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp32_tp8_pp1_acc1_mbs16_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp32_tp8_pp1_acc1_mbs16_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..5951fa144d83bda7c20ee933f68da794e373f3c0 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp128_pp1_acc4_mbs128_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp16_pp1_acc1_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp4_tp16_pp1_acc1_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..4dabce3bdcb305e77d43eb6a6d388126fbdf6de2 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp16_pp1_acc1_mbs8_seq32768_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp16_pp1_acc1_mbs8_seq32768_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp16_pp1_acc1_mbs8_seq32768_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp4_pp1_acc4_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp4_tp4_pp1_acc4_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f97aab542ca46b357fb129d9cb0d02744b19b1f7 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp4_pp1_acc4_mbs8_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp4_pp1_acc4_mbs8_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp4_pp1_acc4_mbs8_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp4_tp64_pp1_acc16_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp4_tp64_pp1_acc16_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..903d108643ac1fd567cbec3d1b4a2e769ccd9665 --- /dev/null +++ b/scripts/run_1.14G_dp4_tp64_pp1_acc16_mbs8_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp4_tp64_pp1_acc16_mbs8_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp4_tp64_pp1_acc16_mbs8_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp64_tp2_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp64_tp2_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..adf4ffc8d93ee7f945b776ae6e08db19a507607c --- /dev/null +++ b/scripts/run_1.14G_dp64_tp2_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp64_tp2_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp64_tp2_pp1_acc32_mbs1_seq2048_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp2_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp2_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..b609b3962a5c815b0be9257b1aa115424a1a8d06 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp2_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp2_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp2_pp1_acc64_mbs4_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp8_pp1_acc2_mbs8_seq32768_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp8_tp8_pp1_acc2_mbs8_seq32768_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..11de202b7b8ee164927cd0e1d3445708e998210f --- /dev/null +++ b/scripts/run_1.14G_dp8_tp8_pp1_acc2_mbs8_seq32768_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp8_pp1_acc2_mbs8_seq32768_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp8_pp1_acc2_mbs8_seq32768_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp8_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab32k.sh b/scripts/run_1.14G_dp8_tp8_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..8a30f13bfd3a008032e99bd5f7d9269d827f33e6 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp8_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp8_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp8_pp1_acc32_mbs2_seq8192_zero1_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_1.14G_dp8_tp8_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh b/scripts/run_1.14G_dp8_tp8_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..334ebb41bf7c65f849fc1ad981347d0c65e2eac3 --- /dev/null +++ b/scripts/run_1.14G_dp8_tp8_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.14G_dp8_tp8_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.14G_dp8_tp8_pp1_acc8_mbs32_seq2048_zero1_tpmodeALL_vocab32k.yaml diff --git a/scripts/run_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..418eadc48503f1e48de12acc91bea4b337dc5d0a --- /dev/null +++ b/scripts/run_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp128_tp2_pp2_acc2_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..07acad5951f331c013e1c62d3ceca9754e653243 --- /dev/null +++ b/scripts/run_1.34G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp128_tp4_pp1_acc2_mbs2_seq2048_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..13b1141bfe7b9f220ee3ae41ce5c1abbd61017bb --- /dev/null +++ b/scripts/run_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp1_pp8_acc8_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp16_tp2_pp1_acc32_mbs1_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp16_tp2_pp1_acc32_mbs1_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9305564259b13866083d73c6d2fd44946d35327a --- /dev/null +++ b/scripts/run_1.34G_dp16_tp2_pp1_acc32_mbs1_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp2_pp1_acc32_mbs1_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp2_pp1_acc32_mbs1_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp16_tp8_pp1_acc16_mbs2_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp16_tp8_pp1_acc16_mbs2_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e3be1aa70490184f59be2a1ea1ad2c8f873378d1 --- /dev/null +++ b/scripts/run_1.34G_dp16_tp8_pp1_acc16_mbs2_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp16_tp8_pp1_acc16_mbs2_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp16_tp8_pp1_acc16_mbs2_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..2fe40a00dc552f67157882261c09f150ec8da718 --- /dev/null +++ b/scripts/run_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp1_tp1_pp8_acc4_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp2_tp16_pp1_acc2_mbs32_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp2_tp16_pp1_acc2_mbs32_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e1c8f802fb9e56abb23f56dac9f784f701a7354e --- /dev/null +++ b/scripts/run_1.34G_dp2_tp16_pp1_acc2_mbs32_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp16_pp1_acc2_mbs32_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp16_pp1_acc2_mbs32_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp256_pp1_acc32_mbs2_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp256_pp1_acc32_mbs2_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..53aa920951f372948fa2d6d5b319fc254bb03800 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp256_pp1_acc32_mbs2_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp256_pp1_acc32_mbs2_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp256_pp1_acc32_mbs2_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp32_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp2_tp32_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..bb1e1fb71f4232b50a943323aedc139888fb8806 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp32_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp32_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp32_pp1_acc2_mbs128_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp64_pp1_acc1_mbs16_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp64_pp1_acc1_mbs16_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..96cbbb8565e059775204d67c00b103abcab51f57 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp64_pp1_acc1_mbs16_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp2_tp64_pp1_acc1_mbs16_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp64_pp1_acc1_mbs16_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..3a082a08ba3809cc12f9a021ed8a100a44488f63 --- /dev/null +++ b/scripts/run_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp2_tp8_pp8_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp32_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp32_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..cd4bc05efbf319ebdb42bb1daefc4ad9ed362808 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..3c44ba81a122ad8e2d61acd333cddee6fe12e656 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp1_pp1_acc4_mbs1_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp32_tp4_pp1_acc2_mbs2_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp32_tp4_pp1_acc2_mbs2_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..673a98b9c64e52b07e34cd754a226bbb24f767f7 --- /dev/null +++ b/scripts/run_1.34G_dp32_tp4_pp1_acc2_mbs2_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp32_tp4_pp1_acc2_mbs2_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp32_tp4_pp1_acc2_mbs2_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp4_tp64_pp1_acc2_mbs16_seq8192_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp4_tp64_pp1_acc2_mbs16_seq8192_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..fa2c70d398839a6be3301888ef444c00cd13e15d --- /dev/null +++ b/scripts/run_1.34G_dp4_tp64_pp1_acc2_mbs16_seq8192_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp4_tp64_pp1_acc2_mbs16_seq8192_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp4_tp64_pp1_acc2_mbs16_seq8192_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ef570037b055b5e60e4127d868f8effeb467f5f7 --- /dev/null +++ b/scripts/run_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_1.34G_dp64_tp2_pp4_acc4_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_1.34G_dp8_tp16_pp1_acc16_mbs4_seq8192_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp16_pp1_acc16_mbs4_seq8192_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ddf87e82f6b73cbf067b1ba47e68367f286cb911 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp16_pp1_acc16_mbs4_seq8192_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp16_pp1_acc16_mbs4_seq8192_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp16_pp1_acc16_mbs4_seq8192_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.sh b/scripts/run_1.34G_dp8_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6ee2e92c480bb213870ed4de9cc1320a3640dbee --- /dev/null +++ b/scripts/run_1.34G_dp8_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp16_pp1_acc8_mbs8_seq2048_zero1_tpmodeALL_vocab131k.yaml diff --git a/scripts/run_1.34G_dp8_tp4_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab131k.sh b/scripts/run_1.34G_dp8_tp4_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..52dbe2aff428a3ce0eac41b923b45317be5e2992 --- /dev/null +++ b/scripts/run_1.34G_dp8_tp4_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_1.34G_dp8_tp4_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_1.34G_dp8_tp4_pp1_acc4_mbs4_seq32768_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_2.28G_dp4_tp8_pp1_acc4_mbs16_seq4096_zero0_tpmodeALL_l26_h2304_heads16.sh b/scripts/run_2.28G_dp4_tp8_pp1_acc4_mbs16_seq4096_zero0_tpmodeALL_l26_h2304_heads16.sh new file mode 100644 index 0000000000000000000000000000000000000000..d2e51f4df8de6ff00940e7d4c83f177853e7ddcc --- /dev/null +++ b/scripts/run_2.28G_dp4_tp8_pp1_acc4_mbs16_seq4096_zero0_tpmodeALL_l26_h2304_heads16.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_2.28G_dp4_tp8_pp1_acc4_mbs16_seq4096_zero0_tpmodeALL_l26_h2304_heads16 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_2.28G_dp4_tp8_pp1_acc4_mbs16_seq4096_zero0_tpmodeALL_l26_h2304_heads16.yaml diff --git a/scripts/run_3.27G_dp32_tp4_pp4_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.sh b/scripts/run_3.27G_dp32_tp4_pp4_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.sh new file mode 100644 index 0000000000000000000000000000000000000000..a9176273d6bdc2d0fedf440b2936ece2192fbe49 --- /dev/null +++ b/scripts/run_3.27G_dp32_tp4_pp4_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_3.27G_dp32_tp4_pp4_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_3.27G_dp32_tp4_pp4_acc1_mbs1_seq2048_zero0_tpmodeRED_l28_h3072_heads24.yaml diff --git a/scripts/run_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..ffafcbcbb3ce53adccf3741bb525dca0eb6c9fbc --- /dev/null +++ b/scripts/run_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=normal + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp4_pp8_acc256_mbs1_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp1_tp8_pp1_acc8_mbs32_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp1_tp8_pp1_acc8_mbs32_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e554c1da00e05b4b9ebe0e80b5bd4338e1c7388a --- /dev/null +++ b/scripts/run_3.57G_dp1_tp8_pp1_acc8_mbs32_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_3.57G_dp1_tp8_pp1_acc8_mbs32_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp1_tp8_pp1_acc8_mbs32_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6ac01ab0e1fceed94a6261977bd260bfb34cc4a2 --- /dev/null +++ b/scripts/run_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp4_tp1_pp2_acc2_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..679b68e2e26e813441f19ff8bec2c583dc5321db --- /dev/null +++ b/scripts/run_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,124 @@ +#!/bin/bash +#SBATCH --job-name=bench_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_3.57G_dp8_tp16_pp1_acc2_mbs16_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_469G_dp1_tp1_pp32_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp1_tp1_pp32_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..a640b787844e85ebeadb3d93d4a797b8a515d1c1 --- /dev/null +++ b/scripts/run_469G_dp1_tp1_pp32_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_469G_dp1_tp1_pp32_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp1_tp1_pp32_acc4_mbs64_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..5d891f4acd0aba7b4b56ea7b4e71f8eda2e21f90 --- /dev/null +++ b/scripts/run_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp2_tp8_pp4_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..995485727f0fd2c6be8ff9d38956849852ca92d7 --- /dev/null +++ b/scripts/run_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_469G_dp4_tp2_pp32_acc32_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_78.4G_dp1_tp8_pp1_acc1_mbs1_seq2048_zero0_tpmodeRED_vocab32k.sh b/scripts/run_78.4G_dp1_tp8_pp1_acc1_mbs1_seq2048_zero0_tpmodeRED_vocab32k.sh new file mode 100644 index 0000000000000000000000000000000000000000..89a75fde22d1cd39f9e12ff409c264c429d47fb1 --- /dev/null +++ b/scripts/run_78.4G_dp1_tp8_pp1_acc1_mbs1_seq2048_zero0_tpmodeRED_vocab32k.sh @@ -0,0 +1,68 @@ +#!/bin/bash + +#SBATCH --job-name=bench_78.4G_dp1_tp8_pp1_acc1_mbs1_seq2048_zero0_tpmodeRED_vocab32k # Job name +#SBATCH --time=00:02:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# # Disable EFA by changing the provider to tcp +# export FI_PROVIDER=tcp + +# # Optionally, you can also unset these EFA-related variables +# unset FI_EFA_FORK_SAFE +# unset FI_EFA_ENABLE_SHM_TRANSFER + +# # If you want to ensure NCCL uses TCP +# export NCCL_IB_DISABLE=1 +# export NCCL_SOCKET_IFNAME=eth0 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_78.4G_dp1_tp8_pp1_acc1_mbs1_seq2048_zero0_tpmodeRED_vocab32k.yaml diff --git a/scripts/run_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6c3279b1cc4d91d6d959caa49a435b4955f10688 --- /dev/null +++ b/scripts/run_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp16_tp2_pp2_acc2_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..110385266fe194b49b7c21ab119eba4c8f9de7e1 --- /dev/null +++ b/scripts/run_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=32 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp16_tp8_pp2_acc4_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0f3d9cc0b097222ea4835d0551aee7f3e79cbf01 --- /dev/null +++ b/scripts/run_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp32_pp4_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp1_tp4_pp32_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp1_tp4_pp32_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..99c39f28b40e1367c329fc8c85e87ab3f9361c48 --- /dev/null +++ b/scripts/run_8.86G_dp1_tp4_pp32_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_8.86G_dp1_tp4_pp32_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp4_pp32_acc2_mbs128_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache.sh b/scripts/run_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache.sh new file mode 100644 index 0000000000000000000000000000000000000000..e6c3e967a743a0f02ee90bc49de3f4e6401a393e --- /dev/null +++ b/scripts/run_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache.sh @@ -0,0 +1,161 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e +echo "Running script: $0" + + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp1_tp8_pp1_acc1_mbs32_seq4096_zero0_tpmodeRED_vocab131k_cache.yaml +fi diff --git a/scripts/run_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..e1ab34fb85dd1430ddf729d1a6d97ec17ead2c0b --- /dev/null +++ b/scripts/run_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp2_tp1_pp32_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c193f9f523b41325c9742097c940683c5d8bad14 --- /dev/null +++ b/scripts/run_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp4_tp4_pp2_acc16_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..6d2b0cf58c3e64be3464e7f260113762958f824a --- /dev/null +++ b/scripts/run_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_8.86G_dp8_tp4_pp2_acc8_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp1_tp2_pp32_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp1_tp2_pp32_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1bb56bb66f3767519e0a4968043b83bc1c37788f --- /dev/null +++ b/scripts/run_80G_dp1_tp2_pp32_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_80G_dp1_tp2_pp32_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=8 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp1_tp2_pp32_acc32_mbs8_seq4096_zero0_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..0e2257eb42c38f56aead49e15f5d5ad28fecabe7 --- /dev/null +++ b/scripts/run_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp32_pp2_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..f67a308c9792ba84225d2030784259579291e8c7 --- /dev/null +++ b/scripts/run_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp32_pp8_acc16_mbs8_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp2_tp4_pp1_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp4_pp1_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..cf44a943ff69ea2207aa299bc4165332420034ae --- /dev/null +++ b/scripts/run_80G_dp2_tp4_pp1_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,73 @@ +#!/bin/bash + +#SBATCH --job-name=bench_80G_dp2_tp4_pp1_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high +#SBATCH --exclude=ip-26-0-160-192,ip-26-0-171-102 + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +# Disable wandb +export WANDB_MODE=disabled + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + + +# Print GPU topology information +echo "=== GPU Topology ===" +nvidia-smi topo -m +echo "==================" + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp4_pp1_acc128_mbs1_seq4096_zero1_tpmodeRED_vocab131k.yaml diff --git a/scripts/run_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..1c786dbd8ae414b4be69fa2ff8831de4fbc11ab0 --- /dev/null +++ b/scripts/run_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=2 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp4_pp2_acc32_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..9a0d05b9c696e780ddada5e2c7a0213d44bcdc26 --- /dev/null +++ b/scripts/run_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=4 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp2_acc4_mbs32_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..56d8e4630d57e66ba4910f6da462bf3ba2a6446a --- /dev/null +++ b/scripts/run_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp2_tp8_pp8_acc64_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..60e1ce185d1086bd58b7ddb00659538a0ec25461 --- /dev/null +++ b/scripts/run_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=01:10:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=INFO # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp64_tp1_pp2_acc2_mbs2_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..485208172d9d6a39c959001235f6253e837025b7 --- /dev/null +++ b/scripts/run_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=64 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp64_tp4_pp2_acc1_mbs4_seq4096_zero1_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh b/scripts/run_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh new file mode 100644 index 0000000000000000000000000000000000000000..c335cf35b126b0c78781797818edd1e5d25e05f7 --- /dev/null +++ b/scripts/run_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k.sh @@ -0,0 +1,159 @@ +#!/bin/bash +#SBATCH --job-name=bench_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k # Job name +#SBATCH --time=00:40:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%j-%x.out + +#SBATCH --nodes=16 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes +#SBATCH --wait-all-nodes=1 # fail if any node is not ready + +# run using +# sbatch --nodes=1 run_multinode.sh +# or +# SALLOC_JOBID=13482276 NNODES=1 bash run_multinode.sh + +set -x -e + +# If not running under SLURM, set default SLURM environment variables +if [ -z "${SLURM_JOB_ID}" ]; then + if [ -z "${SALLOC_JOBID}" ]; then + echo "Error: SALLOC_JOBID environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + if [ -z "${NNODES}" ]; then + echo "Error: NNODES environment variable is required but not set. Please run this script within an salloc session." + exit 1 + fi + export SALLOC_MODE=1 + export SLURM_JOB_ID=$SALLOC_JOBID + export SLURM_NNODES=$NNODES + export SLURM_JOB_NODELIST=$(squeue -j $SALLOC_JOBID -h -o "%N") +fi + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 +# Unset FI_PROVIDER to avoid potential libfabric provider issues +# unset FI_PROVIDER + + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +if [ -z "${SALLOC_MODE}" ]; then # sbatch mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` + +else # srun mode + export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n$SLURM_NNODES` +fi +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +export NCCL_DEBUG=WARN # INFO, WARN +# export NCCL_DEBUG_SUBSYS=ALL +# export CUDA_LAUNCH_BLOCKING=1 + +# Nanotron specific +export NANOTRON_BENCHMARK=1 +export WANDB_MODE=disabled + +# export TORCH_NCCL_USE_COMM_NONBLOCKING=1 + +# Trying to avoid hangs +export TORCH_NCCL_ASYNC_ERROR_HANDLING=1 + +# debug +export TORCH_DISTRIBUTED_DEBUG=DETAIL + +# export NCCL_P2P_LEVEL=NVL +# export CUDA_LAUNCH_BLOCKING=1 +# export NCCL_IB_CUDA_SUPPORT=0 # Disable RDMA +# export NCCL_NET_GDR_LEVEL=LOC +# Test Script - save as test_comm.sh + +# Test 1 - Force TCP +# echo "Running with TCP only..." +# export NCCL_P2P_LEVEL=LOC + +# # Match bandwidth patterns +# export NCCL_MAX_NCHANNELS=2 +# export NCCL_MIN_NCHANNELS=2 + + +# export NCCL_NET_GDR_LEVEL=LOC # Disable RDMA +# export NCCL_SHM_DISABLE=0 # disables the Shared Memory (SHM) transport +# export NCCL_IB_DISABLE=0 # disables the InfiniBand (IB) transport +# export NCCL_IB_TIMEOUT=60 # 20 = ~4 seconds , 21 = ~8 seconds , 22 = ~16 seconds +# export NCCL_IB_RETRY_CNT=7 # Increase retry count as well + +# Force SHM +# export NCCL_NET_PLUGIN=none # fixes hang but doesnt work multinode +# export NCCL_SOCKET_NTHREADS=1 +# export FI_PROVIDER="tcp" + +# Print GPU topology information +if [ -z "${SALLOC_MODE}" ]; then + echo "=== GPU Topology ===" + nvidia-smi topo -m + echo "==================" + export SRUN_ALLOC_ARGS="" +else + export JOBNAME="bench_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k" + export OUTPUT_FILE="/fsx/nouamane/projects/nanotron/logs/$SLURM_JOB_ID-$(date +%Y-%m-%d-%H-%M-%S)-$JOBNAME.out" + export SRUN_ALLOC_ARGS="--jobid=$SLURM_JOB_ID --nodes=$NNODES --gres=gpu:$GPUS_PER_NODE --time=01:02:00 --job-name=$JOBNAME" +fi + + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun in background +if [ -n "${SALLOC_MODE}" ]; then # srun mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k.yaml > $OUTPUT_FILE 2>&1 & + # Store the process ID + SRUN_PID=$! + echo "Job started in background with PID: $SRUN_PID" | tee -a $OUTPUT_FILE + + # Optionally, you can add: + echo "To check job status: ps -p $SRUN_PID" | tee -a $OUTPUT_FILE + echo "To kill the job: kill $SRUN_PID" | tee -a $OUTPUT_FILE + +else # sbatch mode + srun $SRUN_ALLOC_ARGS --wait=0 --kill-on-bad-exit=1 torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + --max_restarts 0 \ + --rdzv_conf timeout=60 \ + /fsx/nouamane/projects/nanotron/run_train.py \ + --config-file benchmark/configs/config_80G_dp8_tp4_pp4_acc4_mbs8_seq4096_zero0_tpmodeRED_vocab131k.yaml +fi diff --git a/scripts/run_dp8_tp1_pp1_acc4_mbs2_seq4096_zero0_l28_h3072_heads20.sh b/scripts/run_dp8_tp1_pp1_acc4_mbs2_seq4096_zero0_l28_h3072_heads20.sh new file mode 100644 index 0000000000000000000000000000000000000000..f86fde3a487548bd223fe910eff8fddf24ec6bb4 --- /dev/null +++ b/scripts/run_dp8_tp1_pp1_acc4_mbs2_seq4096_zero0_l28_h3072_heads20.sh @@ -0,0 +1,57 @@ +#!/bin/bash + +#SBATCH --job-name=bench_dp8_tp1_pp1_acc4_mbs2_seq4096_zero0_l28_h3072_heads20 # Job name +#SBATCH --time=00:15:00 +#SBATCH --partition=hopper-prod +#SBATCH --qos=high + +#SBATCH -o /fsx/nouamane/projects/nanotron/logs/%x-%j.out + +#SBATCH --nodes=1 # Number of nodes (modify as needed) +#SBATCH --ntasks-per-node=1 # Number of tasks per node +#SBATCH --cpus-per-task=60 # CPU cores per task +#SBATCH --gres=gpu:8 # Number of GPUs per node +#SBATCH --exclusive # Exclusive use of nodes + +set -x -e + +# Load any necessary modules for your system +source /etc/profile.d/modules.sh # for some reason module isn't loaded +module load cuda/12.1 + +# Activate your conda environment if needed +source /fsx/nouamane/miniconda/bin/activate +conda activate 2-1-cu121 +export PATH=/fsx/nouamane/miniconda/envs/2-1-cu121/bin:$PATH + +# Get the node names from SLURM +export NODELIST=`scontrol show hostnames $SLURM_JOB_NODELIST` +export MASTER_NODE=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n1` +export MASTER_PORT=12356 + +# Calculate total number of processes +export NNODES=$SLURM_NNODES +export GPUS_PER_NODE=8 +export WORLD_SIZE=$(($NNODES * $GPUS_PER_NODE)) + +# Set some environment variables for better distributed training +export CUDA_DEVICE_MAX_CONNECTIONS=1 +# export NCCL_DEBUG=INFO + +# Nanotron specific +export NANOTRON_BENCHMARK=1 + +# Print some debugging information +echo "Master node: $MASTER_NODE" +echo "All nodes: $NODELIST" +echo "World size: $WORLD_SIZE" + +# Launch the training script using srun +srun torchrun \ + --nnodes=$NNODES \ + --nproc_per_node=$GPUS_PER_NODE \ + --rdzv_id=$SLURM_JOB_ID \ + --rdzv_backend=c10d \ + --rdzv_endpoint=$MASTER_NODE:$MASTER_PORT \ + run_train.py \ + --config-file benchmark/configs/config_dp8_tp1_pp1_acc4_mbs2_seq4096_zero0_l28_h3072_heads20.yaml